Килограмм тротила (тротиловый эквивалент энергии) → баррель нефтяного эквивалента (boe, нефтяной эквивалент энергии)

Содержание:

Содержание

Самолет Ан-2 «Кукурузник»: характеристики, фото, видео

Примечания[ | ]

  1. 123 https://www.cdc.gov/niosh/npg/npgd0641.html
  2. Тротил не взрывается, если его уронить, даже если его прострелить из винтовки. Для взрыва требуется сильная ударная волна (детонация) Ландау Л. Д. ,Китайгородский А. И. Физика для всех: Молекулы. — 5-е изд., испр. — М.: Наука. Главная редакция физ.-мат. литературы, 1982. — с. 167—172. — 208 с.
  3. 2,4,6- Тринитротолуол
  4. К. В. Волков, В. В. Даниленко, В. И. Елин //. Физика горения и взрыва,1990, вып. 26, т. 3, с. 123—125..
  5. СПОСОБ В.Ф.МОЖАРОВСКОГО КОМПЛЕКСНОГО ЭТИОЛОГИЧЕСКОГО ЛЕЧЕНИЯ ПСОРИАЗА ПРОТИВОВИРУСНЫМ И ПРОТИВОМИКРОБНЫМИ ПРЕПАРАТАМИ «ЛИКВАЦИД», «ТРИНОЛ», «ТРИСОЛИД» И «ТРОТИПИД» — Патент РФ 2102072 (неопр.) . ru-patent.info. Дата обращения 23 января 2020.

Определение мощности взрыва

Определение мощности взрыва

Определение мощности взрыва полного тротилового эквивалента (ПТЭ) при испытаниях являлось одной из главных задач. Основным способом экспериментального определения ПТЭ взрыва при атмосферных испытаниях был принят метод, основанный на регистрации развития светящейся области в течение ее первой фазы, — метод «огненного шара» (ОШ). Этот метод, обладавший высокой точностью, имел основное применение в наземных измерительных комплексах полигонов. Наши испытатели совместно с представителями ОКБ-156 МАП и ИХФ АН СССР внедрили метод ОШ в систему самолетных измерений путем установки на самолет-носитель Ту-16 камеры СК-ЗМ, применяемой в комплексе наземных измерений. Однако работу до практического применения довести не удалось из-за их особенностей конструктивного исполнения. Для метода ОШ требовалась разработка, изготовление и внедрение на самолет специальной дальномерной системы, фиксирующей расстояние от камеры до точки взрыва. Вместе с тем наземные измерения мощности взрыва методом ОШ позволили оценить и внедрить в систему самолетных измерений приборы, основанные на использовании других принципов.

Были также проведены работы по использованию доработанных штатных самолетных аэрофотоаппаратов (АФА) для измерений мощности по методу ОШ. Доработанные АФА давали возможность фиксировать на неподвижную фотопленку через вращающийся обтюратор развитие ОШ в первой фазе свечения. Вмонтированный в АФА фотоэлемент обеспечивал регистрацию моментов экспонирования. При этом имелась возможность в одном полете неоднократно проводить измерения с предварительной частичной перемоткой пленки АФА перед очередным взрывом. АФА имели длиннофокусные объективы, что позволяло получать изображения ОШ более четко и больших размеров, чем это было возможно на СК-ЗМ. Идея внедрения этих средств сулила в сочетании с дальномерными системами хорошую перспективу. Однако задержки в разработке специальных дальномерных систем на этом этапе не позволили использовать эти методические проработки с должным эффектом.

Работы по внедрению метода ОШ послужили основой для формирования требований на разработку специальных самолетов-лабораторий.

Другой метод определения мощности взрыва был основан на регистрации длительности первой фазы свечения ОШ — метод «минимума». Этот метод является эмпирическим, основанным на обработке результатов совместных измерений по методу «огненного шара» и измерений длительностей первой фазы свечения взрыва.

В системе самолетных измерений метод «минимума» являлся основным, как обладающий приемлемой точностью определения мощности, а также простотой применения на самолетах — сравнительно легко обеспечивалось размещение на каждом самолете до шести (иногда до десяти) фотоприемников с регистрацией их сигналов на шлейфовых осциллографах

При этом имелась возможность неоднократно измерять в одном из полетов без перезарядки аппаратуры, что было немаловажно для многих этапов испытаний

Наряду с измерениями мощности ядерного взрыва в системе самолетных комплексов применялась аппаратура измерения параметров ударной волны и светового излучения взрыва как для уточнения закономерностей их распространения в атмосфере, так и для изучения ответной реакции элементов конструкции самолетов на воздействие взрывов по условиям прочности, устойчивости, управляемости и пожаростойкости.

http://dic.academic.ru/dic.nsf/emergency/1429/%D0%9C%D0%BE%D1%89%D0%BD%D0%BE%D1%81%D1%82%D1%8C

http://m.sportwiki.to/%D0%92%D0%B7%D1%80%D1%8B%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D0%BB%D0%B0

http://document.wikireading.ru/70322

Таблица 5. Действие ΔPФ на объекты и людей

Объект воздействия Степень воздействия ΔPФ
Кирпичное здание производственного типа Полное разрушение > 70 кПа
  Сильные разрушения 33–70 кПа
  Средние разрушения 25–33 кПа
  Слабые разрушения 12–25 кПа
Остекление Разрушение на 90 % 5 — 10 кПа
  на 50 % 2 — 5 кПа
  на 5 % 1 — 2 кПа
Люди Крайне тяжелое поражение > 100 кПа
  Тяжелое поражение 60–100 кПа
  Среднее поражение 40–60 кПа
  Легкие поражения 20–40 кПа

В таблице в качестве примера приведены данные только для одного типа здания. В справочной литературе имеются аналогичные сведения для большого числа различных зданий и сооружений. В таблице также приведены данные, позволяющие оценить степень поражения людей действием давления ударной волны.

Первая помощь и лечение

При острых интоксикациях пострадавшего следует немедленно вывести из загазованного помещения, снять загрязненную Т. одежду. При попадании продукта на кожу обильно промывают загрязненные места водой и слабо-розовым раствором перманганата калия. Противопоказаны тепловые процедуры, усиливающие образование метгемоглобина, в частности горячая ванна или душ. При выраженной метгемоглобинемии с целью усиления процесса деметгемоглобинизации показано введение 1% р-ра метиленового синего в 40% р-ре глюкозы. При гипоксемии с целью повышения количества растворенного в плазме кислорода — оксигенотерапия, при гипокапнии — карбоген. При тяжелых поражениях печени — в первые сутки форсированный диурез, трасилол, контрикал, липотропные средства — холина хлорид, метионин, липамид. При высокой активности процесса — стероидные гормоны. По показаниям назначают сердечно-сосудистые средства.

При хрон. интоксикациях, сопровождающихся преимущественным поражением печени, показаны витамины группы В, препараты липотропного действия (холина хлорид, липоевая, фолиевая к-ты). В последующем показаны сан.-кур. лечение (Ессентуки, Железноводск), препараты аминохинолинового ряда. При дискинезии желчных путей применяют желчегонные и спазмолитические средства.

Экспертиза трудоспособности. При начальных легкообратимых проявлениях воздействия Т. больного временно переводят на другую работу, при выраженных стойких явлениях — направляют на ВТЭК.

Профилактика отравлений включает механизацию производственных процессов, герметизацию аппаратуры, улучшение вентиляции. Большое значение имеют частая смена спецодежды, ежедневный теплый душ после работы, периодический сан. инструктаж работающих. Обязательно проведение предварительного и периодических мед. осмотров (см. Медицинский осмотр).

Библиогр.: Артамонова В. Г. и Шаталов H. Н. Профессиональные болезни, с. 293, М., 1982; Вредные вещества в промышленности, под ред. Н. В. Лазарева и Э. Н. Левиной, т. 2, с. 259, Л., 1976; Кончаловская Н. М., Попова Т. Б. и Бялко Н. К. Современное состояние проблемы токсического гепатита, Гиг. труда и проф. заболев., № 12, с. 10, 1974; Профессиональные болезни, под ред. E. М. Тареева и А. А. Безродных, с. 209, М., 1976; Раше век а я А. М. и др. Профессиональные болезни, с. 283, М., 1973; Руководство по профессиональным заболеваниям, под ред. Н. Ф. Измерова, т. 1, с. 125, М., 1983.

С этим читают

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

Гексоген

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Угольный эквивалент энергии, условное топливо

Общая характеристика задач оценки

Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:

вид и количество взрывчатого вещества (ВВ);
условия взрыва;
расстояние от места взрыва до места оценки его последствий;
параметры ударной волны;
степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.

Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.

Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов

Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования

Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.

Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т.е. требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).

Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.

Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.

Расчетные соотношения, используемые при решении задач.

Тротиловый эквивалент массы ВВ.

Количество взрывчатого вещества или его массу МBB при проведении расчетов выражают через тротиловый эквивалент МТ. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В словаре Синонимы 4

Смена руководства

Тротил — основное взрывчатое соединение для военных боеприпасов

Тротил — химическая взрывчатка, ставшая основной в военном деле. Тротилом снаряжаются почти все боеприпасы: фугасные снаряды, бомбы авиационные осколочные и фугасные зенитные снаряды, мины противопехотные и противотанковые любой конструкции. Число марок и число единиц этих боеприпасов бесчисленно. Легче назвать те, где не используется тротил: термобарические смеси, термитные бронебойные заряды, боеприпасы объемного взрыва. Их доля в общем потоке производства очень невелика, а более 90% всех разрывных боеприпасов продолжают снаряжаться классическим тротилом.

Средние параметры армейского тротила

  • Скорость детонации 6700-7000 м/сек;
  • Бризантность по Гессу — 16 мм;
  • Объем газообразных продуктов — 730 дм/кг;
  • Температура вспышки — 290 С;
  • Плотность — 1633 г/л;
  • Температура плавления — 80 С;
  • Не более 4-8% взрывов при падении 10 кг с высоты 25 см;
  • Гарантийный срок хранения — 25 лет. После него чувствительность к детонации от удара возрастает.

300 килограмм тротила обеспечат зону поражения взрывной волной радиусом более 50 м. Мощность падает согласно квадрату расстояния, поэтому вес заряда на большую зону поражения рассчитывается соответственно.

Классификация взрывчатых соединений

Под взрывчатым веществом (ВВ) подразумевают состав, способный взрываться, то есть гореть без доступа кислорода с высокой скоростью

Именно скорость горения является самой важной характеристикой. Ее можно представить так: выкладывается длинная дорожка из испытуемого соединения и поджигается

Например, по бензиновой дорожке пламя «побежит» со скоростью десятки метров в секунду (различается по местным условиям). Если же такую дорожку сделать из тротила, то скорость детонации составит более 7000 м/сек. Это огромное значение, недостижимое для многих других взрывчатых соединений. Именно поэтому взрыв тротила такой мощный. Например, масса заряда в легендарной гранате Ф1 составляет всего 60 г. По объему это всего три патрона от охотничьего ружья, однако энергии достаточно, чтобы уничтожить целый автомобиль, обезвредить врага в большом помещении.

Тротил и другие взрывчатые вещества

Нитрации (окислению азотной кислотой) поддаются очень многие органические вещества: обычная целлюлоза, пластмассы, органические растворители. Из всех них был выбран органический растворитель толуол. Он обрабатывается азотной кислотой и на выходе получается тринитротолуол (тротил). Выбор в пользу этого вещества сделан именно из-за его стабильности, устойчивости от случайного взрыва. Также важна низкая себестоимость его производства.

Тротиловый эквивалент стал универсальной единицей измерения бризантности взрывчатых веществ. У тротила он равен 1. Пределом для химической взрывчатки является эквивалент 2. Его имеют Этиленгликольнитрат и Поливинилнитрат. Ввиду крайней нестабильности этих веществ в (жидкости взрываются от небольшого сотрясения, встряхивания в емкости и т.д.) их применение возможно лишь в сильно разбавленном пластификаторам виде, а тогда их тротиловый эквивалент будет таким же, как и у обычного тротила.

Самый безопасный взрыв: Красное море, 1953 год

Порт-Судан

Спустя восемь лет другой пароход повторил судьбу «Гранкана». К счастью, этот взрыв не унёс ни одной жизни, хотя по мощности практически не уступал катастрофе в Оппау, разрушившей город и его окрестности.

В январе 1953 года финское грузовое судно «Тиррения» находилось в Красном море на пути из румынского порта Констанца в Китай с грузом около 4000 тонн аммиачной селитры.

Вечером 23 января, когда корабль находился к востоку от Порт-Судана, экипаж заметил дым, поднимающийся из трюма. Как и на «Гранкане», было принято решение тушить пожар при помощи пара, но эти попытки не увенчались успехом.

Как только стало ясно, что пожар усилился, люди покинули корабль на шлюпках. Ближе к ночи их заметили с проходившего мимо танкера и подняли на борт. По сообщению капитана танкера Олава Рингдала, «Тиррения» взорвалась в 22 часа 58 минут по Гринвичу. При взрыве никто не пострадал.

(13)

где: MХр — масса вещества, находившегося в хранилище до аварии (до взрыва);

δ — коэффициент, зависящий от способа хранения вещества, показывающий долю вещества, переходящую при аварии в газ:

δ=1 — для газов при атмосферном давлении,

δ=0,5 — для сжиженных газов, хранящихся под давлением,

δ=0,1 — для сжиженных газов, хранящихся изотермически,

δ=0,02–0,07 — для растекшихся ЛВЖ;

Объем газового облака V и размер полусферы газового облака r зависят от количества исходного вещества, находившегося в хранилище до аварии, и способа его хранения. Определение этих параметров может быть выполнено по формулам:

Значения других единиц, равные введённым выше

Реферат патента 1998 года ТРОТИЛОВАЯ ШАШКА-ДЕТОНАТОР И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к области средств промышленного взрывания. Шашка выполняется из 45 — 62 мас.% содержащих газовые включения тротиловых гранул, промежутки между которыми заполнены литым тротилом. Шашка восприимчива к штатным средствам инициирования, обладает повышенной, практически неограниченной водостойкостью. Способ изготовления заключается в засыпке в разъемную изложницу гранул, содержащих воздушные включения, и вводе расплава с температурой 83 — 95oC в пространство между гранулами, которые предварительно, а также в процессе ввода подвергают вакуумированию до остаточного давления 1 — 300 мм рт. ст. , после чего дают выдержку для затвердевания. 2 с. и 4 з.п. ф-лы, 3 ил., 2 табл.

Примеры

Мегатонны тротила Энергия Описание
1 × 10 −12 1,162 Вт · ч ≈ 1 калория пищи (большая калория, ккал), которая представляет собой приблизительное количество энергии, необходимое для повышения температуры одного килограмма воды на один градус Цельсия при давлении в одну атмосферу .
1 × 10 −9 1,162 кВтч В контролируемых условиях один килограмм тротила может разрушить (или даже уничтожить) небольшой автомобиль.
1 × 10 −8 11,62 кВтч Приблизительная лучистая тепловая энергия, выделяемая во время трехфазного дугового замыкания , 600 В, 100 кА, в отсеке размером 0,5 м × 0,5 м × 0,5 м (20 дюймов × 20 дюймов × 20 дюймов) за период в 1 секунду.
1,2 × 10 −8 13,94 кВтч 12 кг тротила, использованного при взрыве коптской церкви в Каире , Египет, 11 декабря 2016 г., в результате которого погибли 25 человек.
(1–44) × 10 −6 1,16–51,14 МВтч Мощность обычных бомб составляет от менее одной тонны до 44 тонн FOAB . Мощность крылатой ракеты «Томагавк» эквивалентна 500 кг в тротиловом эквиваленте, или примерно 0,5 тонны.
1,9 × 10 −6 2,90 МВтч В телешоу « Разрушители мифов» использовали 2,5 тонны ANFO для изготовления «самодельных» алмазов.
5 × 10 −4 581 МВтч Реальный заряд 0,5 килотонны в тротиловом эквиваленте (2,1 ТДж) в операции «Матросская шляпа» . Если бы заряд был полной сферой, это было бы 1 килотонна тротила (4,2 ТДж).

Новая ситуация в мире после Второй мировой войны. Распад антигитлеровской коалиции

Шрапнель в Энциклопедическом словаре:

Мощность ядерного взрыва

EdwART. Словарь терминов МЧС , 2010

Смотреть что такое «Мощность ядерного взрыва» в других словарях:

Мощность ядерного взрыва — количественная характеристика энергии взрыва ядерного боеприпаса, обычно выражаемая тротиловым эквивалентом. В мощность ядерного взрыва входит энергия, определяющая развитие механических и тепловых эффектов взрыва, и энергия мгновенного… … Гражданская защита. Понятийно-терминологический словарь

Мощность ядерного боеприпаса — количественная характеристика энергии взрыва ядерного боеприпаса. Обычно выражается тротиловым эквивалентом (массой тротила, энергия взрыва которой равна энергии взрыва данного ядерного боеприпаса) в тоннах, кплотоннах и мегатоннах … Словарь военных терминов

Эпицентр ядерного взрыва — У этого термина существуют и другие значения, см. Эпицентр (значения). Ядерное оружие … Википедия

Поражающие факторы ядерного взрыва — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Мощность взрыва — характеристика разрушительного действия боеприпасов, в которых эффект поражения обеспечивается подрывом заряда взрывчатого вещества. Для морских боеприпасов определяется размерами пробоин, создаваемых в днище или борту корабля, в результате… … Морской словарь

История ядерного оружия — Ядерное оружие … Википедия

Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива (англ. … Википедия

Испытания ядерного оружия — проверка характеристик ядерного боеприпаса (мощность, эффективность поражающих факторов) посредством ядерного взрыва. Попутно отрабатываются средства и способы защиты от ядерного оружия. Места нахождения основных полигонов для И.я.о.:… … Словарь черезвычайных ситуаций

Первое испытание ядерного оружия в Китае — 16 октября 1964 года Китай провел первое испытание ядерного оружия. Взрыв атомной бомбы был осуществлен на полигоне возле озера Лобнор, на северо западе страны, в Синцзянь Уйгурском автономном районе. В тот же день правительство Китая заявило,… … Энциклопедия ньюсмейкеров

Создание тротила

В 1863 году химик Юлиус Вильбрантд, работавший в университете Гёттингена, получил интересный результат в ходе одного из экспериментов с остатками коксованного угля и нефтью. Полученный состав прекрасно горел, выделяя яркое пламя и много черного дыма. Вильбратд окрестил свой состав тринитротолуолом, однако на несколько десятков лет полученное вещество оказалось забыто.

В начале 1890-х о составе пришлось вспомнить в связи с развитием вооруженных сил. Находившиеся на тот момент на вооружении армий мира взрывчатые вещества (ВВ) обладали множеством минусов.

Динамит отличается высокой чувствительностью, и снаряжать им боеприпасы опасно для самих работников фабрик, не говоря о войсках, а о транспортировке во время военных действий, вообще не приходилось и думать.

Гексоген и пикриновая кислота также крайне чувствительны, мелинит вступает в активную связь с металлом оболочки снаряда, основанные на селитре и аммиаке ВВ отличаются гигроскопичностью и быстро выходят из строя.

На фоне этих веществ тринитротолуол был едва ли не идеальной взрывчаткой, а развитие нефтяной промышленности, обеспечило его быстрое распространение.

В 1891 году началось промышленное производство вещества, но только с 1902 года толу удалось частично сменить пикриновую кислоту в боеприпасах германских вооруженных сил.

Большую роль в этом сыграл химик Генрих Каст, по сути доведший до конца работу Вильбрантда и давший возможность производить тринитротолуол в промышленных масштабах.

Происхождение слова простое, это сокращенная форма от полного названия взрывчатки.

Шило в мешке утаить невозможно, поэтому уже в 1909 году в России на Охтинском заводе стала производиться эта секретная новая взрывчатка. Первая Мировая война прошла под знаком равенства пикриновой кислоты и тола в качестве ВВ, но в послевоенный период и в эпоху Второй Мировой войны тротил стал главной взрывчаткой на планете.

Производство тротила сильно менялось с течением времени.

Первоначально толуол, продукт, получаемый из нефти, нитровали в три стадии с последующей очисткой и кристаллизацией с помощью этилового спирта. Трудоемкий процесс, в котором было задействовано ценное, «дефицитное» сырье, изменили в 1932-1933 годах.

Модернизация позволила пустить спирт на более важные нужды, его заменили кислотой. Сильно мешал факт прерывающегося производства взрывчатки. В 1936 году был опробована и принята технология производства тринитротолуола непрерывного типа в четыре фазы. В послевоенное время создавались новые способы непрерывного производства тротила для армии и промышленности.

Особенностью их было использование концентрированных кислот. В этом отечественная промышленность серьезно обгоняла западных конкурентов, так как и в Германии, и в Англии, и в США производство ВВ было не так дешево и эффективно как в СССР, и, как правило, было прерывающегося типа.

Угольный эквивалент энергии, условное топливо

Удаление насекомых с лобового стекла автомобиля

Физические и химические свойства тротила

Тротил получают с помощью нитрования такого вещества, как тол. Всего существует шесть изомеров, которые имеют одну и ту же формулу, но разно положение относительно бензольного ядра, что приводит к различным химическим свойствам.

Основные химические свойства тротила:

температура затвердевания 85°С
температура плавления 82°С
температура кипения 295°С
теплота плавления 21,41 ккал/г
теплота кристаллизации 5,6 ккал/моль
гигроскопичность 0,05%
растворимость — при температуре воды 25°С/100°С 0,02/0,15

Основные физические свойства тротила:

состояние твердое
скорость детонации (при плотности тротила 1,64 кг/м3) 6,95 сек.
дробящее воздействие по Гессу 16 мм
дробящее воздействие по Касту 3,9 мм
объем газообразования при детонации 730 л/кг
фугасность 285 мл
чувствительность при падении (10 кг тротила с высоты 25 см) до 8% детонации
максимальный срок хранения 25 лет, после чего возрастает чувствительность к детонации

Плотность тротила

Плотностью является соотношение массы тела к занимаемому объему. Плотность взрывчатого вещества составляет 1654 кг/м3.

Мощность

Мощность взрыва тротила измеряется в тротиловом эквиваленте. При взрыве тротила выделяется энергия, которая составляется 4184 Джоулей или 1000 термохимических калорий на 1 грамм тротила.

Теплота взрыва

Теплотой взрыва тротила называется объем энергии, выделяемый при взрывчатом вращении. При взрыве 1 кг тротила она составляет от 4100 до 4700 кДж.

Дробящее воздействие

Дробящее воздействие (бризантность) является одной из характеристик взрывчатых веществ, которая определяет способность вещества на послевзрывное воздействие в окружающей среде. Бризантность тротила составляет в 16,5 мм, что на порядок выше других веществ, таких как гексоген (4,2 мм) и октоген (5,4 мм).

Тротиловый эквивалент

Тротиловым эквивалентом называется мера энерговыделения при взрыве взрывчатых веществ и определяющая количество исходящей энергии. Данная мера используется для вычислений мощности взрыва, и составляет 4184 Дж на 1000 кал/г.

Взрыв тротилового заряда весом в 100 кг

В тротиловом эквиваленте проходит измерение и сравнение мощности взрывчатых веществ в соотношении с тротилом.

Название взрывчатого вещества Мощность
тротил 1,0
тринитрорезорцинат свинца (ТНРС) 0,39
порох 0,55 -0,66
тетрил (мощнее тротила) 1,25
гексоген 1,6
тритонал 1,6
Этиленгликольдинитрат (ЭГДН) 1,6
Октоген 1,7

Летно-технические характеристики

Для Боинга 767-300 основным конкурентом в небе является Аэробус А330-200.

Боинг 767-300 Аэробус А330-200
Длина фюзеляжа, м 54,94 58,82
Ширина, размах крыла, м 47,57 60,3
Вес пустого/максимальный на взлете, т 86 / 158,7 109 / 233
Максимальная дальность полета, км 9700 13400
Крейсерская скорость, км/ч 851 871
Вместительность, пасс. 218…350 253…406
Двигатели Два турбовентиляторных. Чаще всего — General Electric CF6-80A. Встречаются также General Electric CF6-80C2, Pratt & Whitney PW4062. Очень редки Rolls-Royce RB211 Два турбовентиляторных. Устанавливаются силовые остановки: General Electric CF6-80E1, Pratt & Whitney PW4000 или Rolls-Royce Trent 700

Два турбовентиляторных. Устанавливаются силовые остановки: General Electric CF6-80E1, Pratt & Whitney PW4000 или Rolls-Royce Trent 700

Компания Боинг сделала заметно меньший по размерам широкофюзеляжный самолет, но более экономичный. Кроме того, 767 семейство стало первым из двухдвигательных самолетов, которые получили лицензию на трансатлантические перелеты. Аэробус ответил на вызов лишь на десять лет позже. Это дало возможность Боингу 767 к тому моменту уже прочно обосноваться в небе и подготовить конкурентные модификации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector