Нейтронное оружие

Золотая ракета

Гораздо большие перспективы для нового оружия открылись в противоракетной обороне. Из-за недостаточной точности систем наведения времен холодной войны баллистические ракеты предполагалось уничтожать перехватчиками с атомным зарядом. Однако за пределами атмосферы ударная и тепловая волны ядерного взрыва не действуют. А ядерный взрыв в атмосфере оставляет нежелательное загрязнение.

Нейтронные потоки одинаково эффективно работают и в атмосфере, и за ее пределами. Проходя сквозь плутоний ядерной боеголовки, они вызывают в нем преждевременную цепную реакцию без достижения критической массы. В США это явление назвали «эффектом шипучки» — боеголовка мегатонного класса взрывалась, как хлопушка на детском празднике. Вдобавок работа нейтронного оружия сопровождается мягким рентгеновским излучением — оно моментально испаряет оболочку вражеского термоядерного заряда, распыляя его в атмосфере.

Принятая на вооружение в 1975 году американская противоракета LIM-49A Spartan несла пятимегатонную нейтронную боеголовку, для увеличения потока частиц ее внутренняя поверхность была покрыта слоем золота. Пришедшие на смену Spartan перехватчики также снабжены нейтронными боевыми частями. По данным из открытых источников, схожие технологии используются и в ракетах российской системы ПРО А-135 «Амур».

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции деления ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищает экипаж практически от всех поражающих факторов классического ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет, и в 1976 году американцы провели очередные испытания нейтронного заряда, результаты оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, и Франция). Источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. Именно тогда в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от данного вида оружия. Но как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

Примечания

Принцип действия атомных бомб

Ядерный заряд разделён на несколько частей до критических размеров, чтобы в каждой из них не могла начаться саморазвивающаяся неуправляемая цепная реакция делений атомов делящегося вещества. Такая реакция возникнет лишь тогда, когда все части заряда будут быстро соединены в одно целое. От скорости сближения отдельных частей в сильной степени зависит полнота протекания реакции и в конечном счёте мощность взрыва. Для сообщения большой скорости частям заряда можно использовать взрыв обычного взрывчатого вещества. Если части ядерного заряда расположить по радиальным направлениям на некотором расстоянии от центра, а с внешней стороны поместить заряды тротила, то можно осуществить взрыв обычных зарядов, направленный к центру ядерного заряда. Все части ядерного заряда не только с огромной скоростью соединяться в единое целое, но и окажутся на некоторое время сжатыми со всех сторон огромным давлением продуктов взрыва и не смогут разделиться сразу, как только начнётся в заряде цепная ядерная реакция. В результате этого произойдёт значительно большее деление, чем без такого сжатия, и , следовательно, повысится мощность взрыва. Увеличению мощности взрыва при том же количестве делящегося вещества способствует также отражатель нейтронов (наиболее эффективными отражателями являются бериллий , графит, тяжёлая вода ). Для первого деления, которое положило бы начало цепной реакции, нужен, по меньшей мере, один нейтрон. Рассчитывать на своевременное начало цепной реакции под действием нейтронов, появляющихся при самопроизвольном ( спонтанном ) делении ядер, нельзя, т.к. оно происходит сравнительно редко: для U-235 — 1 распад в час на 1 гр. вещества. Нейтронов, существующих в свободном виде в атмосфере, также очень мало: через S = 1см/кв. за секунду пролетает в среднем около 6 нейтронов. По этой причине в ядерном заряде применяют искусственный источник нейтронов — своеобразный ядерный капсюль-детонатор. Он обеспечивает также множество начинающихся одновременно делений, поэтому реакция протекает в виде ядерного взрыва.

Поставленные цели и результаты

Инженеры предполагали, что такая технология позволит сделать из нейтронной бомбы высокоэффективное оружие, способное уничтожить живую силу противника в любом укрытии. Сильнейший поток быстрых нейтронов легко проникает через разнообразные преграды. Такое качество позволило бы сохранить инфраструктуру города, при этом уничтожив всех его жителей. Говорилось о том, что удастся сохранить вооружение противника.

Также целью создания нейтронного оружия стала возможность его применения в качестве элемента противоракетной обороны. В безатмосферном пространстве отсутствуют препятствия, которые могли бы помешать перемещению нейтронов. Поток этих частиц во время взрыва может достигнуть боеголовки противника, вызвав в ней цепную реакцию.

Защита

Нейтронные боеприпасы разрабатывались в —1970-х годах, главным образом, для повышения эффективности поражения бронированных целей и живой силы, защищённой бронёй и простейшими укрытиями. Бронетехника 1960-х годов, разработанная с учётом возможности применения на поле боя ядерного оружия, чрезвычайно устойчива ко всем его поражающим факторам.

Естественно, после появления сообщений о разработке нейтронного оружия стали разрабатываться методы защиты и от него. Были разработаны новые типы брони, которая уже способна защитить технику и её экипаж от потока нейтронов. Для этой цели в броню добавляются листы с высоким содержанием бора, являющегося хорошим поглотителем нейтронов (по этой же причине бор является одним из основных конструктивных материалов реакторных стержней-поглотителей нейтронов), а броню делают многослойной, включающей элементы из обеднённого урана. Кроме того, состав брони подбирается так, чтобы она не содержала химических элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность.

Вполне возможно, что такая защита будет эффективна и против существующих пока в проектах и прототипах нейтронных пушек, также использующих потоки высокоэнергетических нейтронов.

История создания

Конструкция

Солнце как термоядерный реактор

Общеизвестно, что температура Солнца, точнее его ядра, достигающая 15000000 °К, поддерживается за счет непрерывного протекания термоядерных реакций. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба?

Дело в том, что при огромной доле водорода в составе солнечной массы, которая достигает 71 %, доля его изотопа дейтерия, ядра которого только и могут участвовать в реакции термоядерного синтеза, ничтожно мала. Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино (т. наз. бета-распад), что является редким событием. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле.

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-ых годах 20 века в США. Через 15 лет технологию производства доработали и создали первый в мире нейтронный заряд, что привело к своеобразной гонке вооружений. На данный момент такой технологией обладают Россия и Франция.

Главной опасностью этого типа оружия при его применении стала не возможность массового уничтожение мирного населения страны противника, а размытие грани между ядерной войной и обычным локальным конфликтом. Поэтому Генеральной Ассамблеей ООН было принято несколько резолюций с призывом к полному запрету нейтронного оружия.

К сожалению, проект остался только на бумаге, т.к. ни одна страна запада и США не приняли его.

Позже, в 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. Что несомненно не помешает наладить их массовый выпуск за короткое время при изменении военно-политической ситуации в мире.

История

Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb

), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:

  • по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
  • по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
  • по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
  • по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.

Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 652 дня

Пример эффектов взрыва нейтронного заряда на различных расстояниях

Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м
Рассто-яние Давление Радиация Защита бетон Защита земля Примечания
0 м ~108 МПа Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения.
от центра ~50 м 0,7 МПа n·105Гр ~2-2,5 м ~3-3,5 м Граница светящейся сферы диаметром ~100 м , время свечения ок. 0,2 с.
эпицентр 100 м 0,2 МПа ~35 000 Гр 1,65 м 2,3 м Эпицентр взрыва. Человек в обычном убежище — гибель или крайне тяжёлая лучевая болезнь . Разрушение убежищ, рассчитанных на 100 кПа .
170 м 0,15 МПа Сильные повреждения танков .
300 м 0,1 МПа 5000 Гр 1,32 м 1,85 м Человек в убежище — лучевая болезнь от лёгкой до тяжёлой степени .
340 м 0,07 МПа Лесные пожары .
430 м 0,03 МПа 1200 Гр 1,12 м 1,6 м Человек — «смерть под лучом». Сильные повреждения сооружений .
500 м 1000 Гр 1,09 м 1,5 м Человек гибнет от радиации сразу («под лучом») или через несколько минут.
550 м 0,028 МПа Средние повреждения сооружений .
700 м 150 Гр 0,9 м 1,15 м Гибель человека от радиации через несколько часов.
760 м ~0,02 МПа 80 Гр 0,8 м 1 м
880 м 0,014 МПа Средние повреждения деревьев .
910 м 30 Гр 0,65 м 0,7 м Человек гибнет через несколько суток; лечение — уменьшение страданий.
1000 м 20 Гр 0,6 м 0,65 м Стёкла приборов окрашиваются в тёмно-бурый цвет.
1200 м ~0,01 МПа 6,5-8,5 Гр 0,5 м 0,6 м Крайне тяжёлая лучевая болезнь; гибнут до 90 % пострадавших .
1500 м 2 Гр 0,3 м 0,45 м Средняя лучевая болезнь; гибнут до 80 % , при лечении до 50 % .
1650 м 1 Гр 0,2 м 0,3 м Лёгкая лучевая болезнь . Без лечения могут погибнуть до 50 % .
1800 м ~0,005 МПа 0,75 Гр 0,1 м Радиационные изменения в крови .
2000 м 0,15 Гр Доза может быть опасна для больного лейкемией .
Рассто-яние Давление Радиация Защита бетон Защита земля Примечания
Примечания

  1. Расстояние в первых двух строках от центра взрыва, далее расстояние от эпицентра взрыва.

  2. Избыточное давление вещества на фронте падающей ударной волны в мегапаскалях (МПа), рассчитано в соответствии с данными для взрыва мощностью 1 кт на высоте 190 м (С. 13) по формуле подобия параметров ударной волны для различных мощностей зарядов (С. 10 там же) с учётом того, что по ударной волне нейтронный боеприпас мощностью 1кт примерно эквивалентен обычному ядерному 0,5кт :R1/R2 = (q1/q2)1/3,где R1 и R2 — расстояния на которых будет наблюдаться одинаковое давление ударной волны;q1 и q2 — мощности сопоставляемых зарядов.

  3. Суммарное значения доз радиации нейтронов и гамма-лучей в греях (Гр).

  4. Защита отдельно из обычного плотного бетона или из сухой земли; имеется в виду слой вещества в перекрытии заглублённого бетонного или деревоземляного сооружения, необходимый для снижения внешней дозы радиации до считающейся приемлемой в убежище дозы в 50 Рентген = 0,5 Гр.
При составлении таблицы использовалась литература:
1. Безопасность жизнедеятельности. Защита населения и территорий в чрезвычайных ситуациях : учебное пособие для сотруд. высш. учеб. заведений /  — М.: Изд. центр «Академия», 2007. — С. 133—138. — ISBN 978-5-7695-3392-1.
2. Большая Советская Энциклопедия. — 3-е изд. — М.: «Советская Энциклопедия», 1978. — Т. 30.
3. Действие ядерного оружия. Пер. с англ. — М.: Воениздат, 1965.
4. Иванов, Г. Нейтронное оружие // Зарубежное военное обозрение. — 1982. — № 12. — С. 50 — 54.
5. Защита от оружия массового поражения. — М.: Воениздат, 1989.
6. Козлов, В. Ф. Справочник по радиационной безопасности. — М., 1987.
7. Миргородский, В. Р. Безопасность жизнедеятельности : курс лекций / под ред. Н. Н. Пахомова. — М.: Изд-во МГУП, 2001. — Раздел III. Защита объектов печати в чрезвычайных ситуациях.
8. Убежища гражданской обороны. Конструкции и расчёт / В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — ISBN 5-274-00515-2.

Защита

Нейтронные боеприпасы разрабатывались в —1970-х годах, главным образом, для повышения эффективности поражения бронированных целей и живой силы, защищённой бронёй и простейшими укрытиями. Бронетехника 1960-х годов, разработанная с учётом возможности применения на поле боя ядерного оружия, чрезвычайно устойчива ко всем его поражающим факторам.

Естественно, после появления сообщений о разработке нейтронного оружия стали разрабатываться методы защиты и от него. Были разработаны новые типы брони, которая уже способна защитить технику и её экипаж от потока нейтронов. Для этой цели в броню добавляются листы с высоким содержанием бора, являющегося хорошим поглотителем нейтронов (по этой же причине бор является одним из основных конструктивных материалов реакторных стержней-поглотителей нейтронов), а броню делают многослойной, включающей элементы из обеднённого урана. Кроме того, состав брони подбирается так, чтобы она не содержала химических элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность.

Вполне возможно, что такая защита будет эффективна и против существующих пока в проектах и прототипах нейтронных пушек, также использующих потоки высокоэнергетических нейтронов.

История

Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:

  • по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
  • по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
  • по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
  • по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.

Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 80 дней].

Гипотетические эффекты чистой термоядерной бомбы

При значительном перекрытии между двумя устройствами мгновенные радиационные эффекты чистого термоядерного оружия будут аналогично намного выше, чем у чистого термоядерного оружия : примерно вдвое больше начального излучения, чем у нынешнего стандартного оружия на основе термоядерного деления. Как и все нейтронные бомбы, которые в настоящее время должны получать небольшой процент энергии срабатывания от деления, при любом заданном уровне мощности 100% -ная термоядерная бомба аналогичным образом генерирует более миниатюрную атмосферную взрывную волну, чем бомба чистого деления. Последнее устройство деления имеет более высокое отношение кинетической энергии на единицу выделяемой энергии реакции, что наиболее заметно по сравнению с реакцией синтеза DT. Больший процент энергии от реакции DT-синтеза по своей природе вкладывается в генерацию незаряженных нейтронов, в отличие от заряженных частиц, таких как альфа-частица реакции DT, первичной частицы , которая наиболее ответственна за кулоновский взрыв / огненный шар.

Миф 3: любая броня бессильна перед нейтронной бомбой

Каковы последствия взрыва? Происходит нейтронная бомбардировка объектов в зоне поражения. Если на их пути встают металлы, то после бомбардировки их атомов образуется радиоактивность с появлением радиоактивного изотопа. Поэтому прятаться во время взрыва за стальной плитой – это верный способ оказаться на том свете.

Но в армии неглупые люди. Средство защиты экипажей военной техники разработали в достаточно короткий срок. Всего лишь следовало дополнить броню материалами либо частями, поглощающими нейтроны.

Затем решили использовать обедненный уран. В США на этом не остановились: американцы применили дакрит – особое керамическое сырье, способное стать альтернативой бору и урану, но менее тяжелое.

Если военная техника не попадет в эпицентр взрыва, ее команда вполне может остаться в живых. Что касается обыкновенных солдат… В радиусе 50 м от эпицентра взрыва пехотинцы могут укрыться за бетонной стеной толщиной до 2,5-3 м. Впрочем, следует помнить о взрывной волне.

В других случаях необходимо учесть, что эффективнее всего нейтроны поглощаются веществами, содержащими H2. Такими, как обычная питьевая вода, парафин, полипропилен, полиэтилен и другими.

Способ 1: избавляемся от наручников с помощью «ключа»

Вариации пусков

Управляемые ракеты — главный носитель ядерного оружия. Ракеты межконтинентальной дальности с ядерными боевыми частями — наиболее грозная составляющая ядерных арсеналов. Боеголовка (боевой блок) доставляется к цели за минимальное время, при этом представляет собой трудно поражаемую цель. С ростом точности попадания МБР превратились в средство поражения хорошо защищенных целей, включая жизненно важные объекты военного и гражданского назначения. Существенно повысили эффективность ракетно-ядерного оружия разделяющиеся боеголовки. Так, 20 боеприпасов по 50 кт по эффективности аналогичны одному в 10 Мт. Разделившиеся головки индивидуального наведения легче прорывают систему противоракетной обороны (ПРО), чем моноблочная. Разработка маневрирующих боевых блоков, траекторию которых противник не может просчитать, еще более затруднила работу ПРО.

МБР наземного базирования сейчас устанавливают либо в шахты, либо на мобильные установки. Шахтная установка — наиболее защищенная и готовая к немедленному пуску. Американская ракета шахтного базирования «Минитмэн-3» может доставить на дальность до 13 000 км разделяющуюся боеголовку с тремя блоками по 200 кт каждый, российская Р-36М — на 10 000 км боеголовку из 8 блоков мегатонного класса (возможна и моноблочная боевая часть). «Минометный» пуск (без яркого факела двигателя), мощный комплекс средств преодоления ПРО усиливают грозный облик ракет Р-36М и Н, названных на Западе SS-18 «Сатана». Но шахта стационарна, как ее ни прячь, и со временем ее точные координаты окажутся в полетной программе боевых блоков противника. Другой вариант базирования стратегических ракет — мобильный комплекс, с помощью которого можно держать противника в неведении о месте пуска. Например, боевой железнодорожный ракетный комплекс, замаскированный под обычный состав с пассажирскими и рефрижераторными вагонами. Пуск ракеты (например — РТ-23УТТХ с 10 боевыми блоками и дальностью стрельбы до 10 000 км) можно произвести с любого участка пути железной дороги. Тяжелые вездеходные колесные шасси позволили разместить пусковые установки МБР и на них. Скажем, российская универсальная ракета «Тополь-М» (РС-12М2 или SS-27) с моноблочной боевой частью и дальностью полета до 10 000 км, поставленная на боевое дежурство в конце 1990-х, предназначена для шахтных и мобильных грунтовых установок, предусмотрено ее базирование и на подводные лодки. Боевая часть этой ракеты при весе 1,2 тонны имеет мощность 550 кт, то есть каждый килограмм ядерного заряда в данном случае эквивалентен почти 500 тоннам взрывчатки.

Основной способ повысить внезапность удара и оставить противнику меньше времени на реакцию — сократить подлетное время, разместив пусковые установки ближе к нему. Этим противостоящие стороны занимались весьма активно, создавая оперативно-тактические ракеты. Договор, подписанный М. Горбачевым и Р. Рейганом 8 декабря 1987 года, привел к сокращению ракет средней (от 1 000 до 5 500 км) и меньшей (от 500 до 1 000 км) дальности. Причем по настоянию американцев в Договор включили комплекс «Ока» с дальностью не более 400 км, не попадавший под ограничения: уникальный комплекс пошел «под нож». Но ныне уже разработан новый российский комплекс «Искандер».

Попавшие под сокращение ракеты средней дальности достигали цели всего за 6—8 минут полета, в то время как оставшиеся на вооружении межконтинентальные баллистические ракеты обычно находятся в пути 25—35 минут.

В американской ядерной стратегии уже лет тридцать важная роль отводится крылатым ракетам. Их достоинства — высокая точность, скрытность полета на малых высотах с огибанием рельефа, малая радиолокационная заметность и возможность нанесения массированного удара с нескольких направлений. Крылатая ракета «Томагавк», запускаемая с надводного корабля или подводной лодки, может донести ядерную или обычную боеголовку на дальность до 2 500 км, преодолевая это расстояние примерно за 2,5 часа.

Девизы армий мира

Мы узнали девиз ВДВ, ВМФ, танкистов и летчиков. А есть ли общая речевка современной Российской армии? К сожалению, официальной информации о существовании такого девиза нет. Но если мы посмотрим на историю нашего государства, то увидим, что в императорское время русские воины шли в бой со словами: «За веру, царя и Отечество!», а в Великую Отечественную гнали врага с родной земли с кличем: «За Советскую Родину!», «За Родину, за Сталина!».

А вот местом рождения такого явления, как воинский девиз, историки считают Древний Рим. Им были слова: Ave, Caesar, morituri te salutant! (Идущие на гибель приветствуют тебя, о, Цезарь!). Надо сказать, что девиз был позаимствован у гладиаторов.

Как же обстоит дело с воинскими речевками в других современных странах? Их практика довольно распространена:

  • Австралийские ВВС: «Через тернии — к звездам!».
  • Финская армия: «Качество — наша сила».
  • Французские вооруженные силы: «Честь и Отечество».
  • Канадцы: «Мы стоим на твоей страже!».
  • Немецкая армия: «Служим Германии!».
  • США: «Армия из одного» (вместо былого «Стань всем, чем сможешь»).
  • Пехотинцы Соединенных Штатов: «Не уступим никому!».
  • Десантное подразделение США: «Свидание с судьбой».

Девиз ВДВ лаконичен и ясен. «Никто, кроме нас!» — эти слова десантники подтвердили своими бессмертными подвигами.

Универсальное российское шасси ГАЗ-3308

Миф 4: у нейтронной бомбы высокая продолжительность радиоактивного излучения

Когда-то Айзек Азимов назвал нейтронную бомбукапиталистическим оружием» — оно, мол, уничтожает людей, но заботится о материальной собственности. Ну кто же выберет машины вместо людей? Только негодяй‑буржуй.

Нейтронная бомба уничтожает только жизнь, а не собственность»

Создатели бомбы уверяли правительство США, что у неё есть одно железобетонное преимущество: она не вызывает долговременного радиоактивного заражения местности. Дескать, через сутки армия может без последствий занимать зачищенную территорию.

Испытания и расчёты показали, что, в отличие от любого другого атомного оружия, нейтронная бомба действительно практически не загрязняет территорию. В том смысле, что железные конструкции будут не сильнофонить» какое-то время и радиоактивное заражение местности можно легко дезактивировать по ходу боёв — а не через несколько лет(а то и десятков лет), как при взрыве водородной бомбы.

Как работает нейтронная бомба — особенности ее поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации «обычной» ядерной бомбы

Именно это свойство нейтронов и привлекло внимание военных

Нейтронная бомба имеет ядерный заряд относительно небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые особенности.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.

Кроме того, поток нейтронов вызывает в материалах (например, в броне) наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Кстати, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

Первые изобретения и возможность их применения в современном мире

Главным требованием к конструкции современной бомбы является обеспечение формирования сферической ударной волны при взрыве. Наглядным примером является ядерный заряд, конструкция которого состояла из плутониевого шара и 32 зарядов различных форм (12 пятигранных и 20 шестигранных). Сложность в достижении необходимых параметров вызывал разрыв по времени детонации и разброса. Такое расхождение составляло миллионную долю секунды. Для компенсации по времени и запуска использовалось электронное устройство весом около 200 кг.

Одним из первых известных человечеству приспособлений, которое приводило в действие боезаряд, является генератор Сахарова. Конструкция последнего состоит из кольца и медной катушки. Без такого генератора невозможно запустить электромагнитную бомбу. Принцип действия изобретения Сахарова следующий: детонаторы, подрывающиеся синхронно, инициируют детонацию, которая направляется к оси. В то же время происходит разряд конденсатора и формируется магнитное поле во внутренней части катушки. Из-за избыточного давления ударная волна замыкала сформировавшееся поле внутри приспособления.

Так как время действия ограничено, внутри генератора образовывался ток, который прекращал процесс излучения энергии. Такая причина привела к непригодности использования изобретения Сахарова для излучения электромагнитной энергии. Несмотря на этот факт, устройство можно использовать в мирных целях – для генерации импульсных токов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector