Получение термоядерной энергии синтезом в реакторе легких элементов

Содержание:

ITER

В 1985 г. Советский Союз предложил построить токамак следующего поколения совместно с Европой, Японией и США. Работа велась под эгидой МАГАТЭ. В период с 1988 по 1990 год были созданы первые проекты Международного термоядерного экспериментального реактора ITER, что также означает «путь» или «путешествие» на латыни, с целью доказать, что синтез может вырабатывать больше энергии, чем поглощать. Канада и Казахстан также приняли участие при посредничестве Евратома и России соответственно.

Через 6 лет совет ITER одобрил первый комплексный проект реактора на основе устоявшейся физики и технологии стоимостью 6 млрд $. Тогда США вышли из консорциума, что вынудило вдвое сократить затраты и изменить проект. Результатом стал ITER-FEAT стоимостью 3 млрд долл., но позволяющий достичь самоподдерживающей реакции и положительного баланса мощности.

В 2003 г. США вновь присоединились к консорциуму, а Китай объявил о своем желании в нем участвовать. В результате в середине 2005 года партнеры договорились о строительстве ITER в Кадараше на юге Франции. ЕС и Франция вносили половину от 12,8 млрд евро, а Япония, Китай, Южная Корея, США и Россия – по 10% каждый. Япония предоставляла высокотехнологичные компоненты, содержала установку IFMIF стоимостью 1 млрд евро, предназначенную для испытания материалов, и имела право на возведение следующего тестового реактора. Общая стоимость ITER включает половину затрат на 10-летнее строительство и половину – на 20 лет эксплуатации. Индия стала седьмым членом ИТЭР в конце 2005 г.

Эксперименты должны начаться в 2018 г. с использованием водорода, чтобы избежать активации магнитов. Использование D-T плазмы не ожидается ранее 2026 г.

Цель ITER – выработать 500 МВт (хотя бы в течение 400 с), используя менее 50 МВт входной мощности без генерации электроэнергии.

Двухгигаваттная демонстрационная электростанция Demo будет производить крупномасштабное производство электроэнергии на постоянной основе. Концептуальный дизайн Demo будет завершен к 2017 году, а его строительство начнется в 2024 году. Пуск состоится в 2033 году.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Крафт[править | править код]

Для постройки работающей конструкции реактора потребуются следующие блоки:

Ингредиенты Процесс Результат Описание

Компьютер +Микросхема потока энергии +Катушка термоядерного реактора

Консоль управления термоядерным реактором Позволяет производить операции с термоядерным реактором. Реактор включится сразу как только будут загружены реагенты и требуемая энергия. Для ручного управления установите регулятор для механизмов и прикрепите к нему рычаг.

Микросхема потока энергии +Сверхпроводник (предмет) +Сверхпроводниковый конденсатор

Инжектор энергии Хранит 10 000 000 еЭ для использования термоядерным реактором. У каждого блока своё хранилище энергии и запитывать их нужно все сразу.

Микросхема потока энергии +Сундук +Высокотехнологичный механизм +Помпа илиМодуль помпы

Инжектор материалов Впрыскивает в термоядерный реактор жидкости. Внутренняя ёмкость составляет 10 вёдер (капсул), вдобавок в верхний слот можно положить стопку капсул, которые будут загружаться автоматически. Кроме того, загруженные жидкости можно вылить обратно в капсулы.

Микросхема потока энергии +Высокотехнологичный механизм +Сундук +Помпа илиМодуль помпы

Экстрактор материалов Выводит синтезированные материалы из термоядерного реактора.

Нихромовая нагревательная спираль +Микросхема потока энергии +Сверхпроводник (предмет) +Высокотехнологичный механизм +Иридиевый отражатель нейтронов

Катушка термоядерного реактора Из катушек строится «кольцо» реактора.Судя по всему, это аналог кольцевой камеры Токамак.

Тема недели: термоядерный реактор ITER

28 июля 2020 года в исследовательском центре Кадараш во Франции начали собирать экспериментальный термоядерный реактор типа токамак — сокращенно от «тороидальная камера с магнитными катушками». Строительство реактора планируют завершить в 2025 году. В проекте ITER участвуют ЕС, Индия, Китай, Южная Корея, Россия, США и Япония.

Термоядерный синтез — это реакция, в ходе которой легкие атомы объединяются в более тяжелые. В результате высвобождается энергия. Такой процесс постоянно происходит на Солнце и других звездах. Если ученые смогут построить работающий реактор, люди получат источник неограниченной и «зеленой» энергии.

Сам токамак по форме похож на полый бублик, из которого откачали воздух. В качестве топлива для реактора используют изотопы (подвиды) водорода дейтерий и тритий. Их помещают в токамак и с помощью электрического тока разогревают до температуры в несколько млн градусов. Тогда водород превращается в плазму — заряженный газ, в котором электроны оторваны от ядер атомов. Вся эта масса удерживается внутри реактора при помощи очень мощных магнитов. При температуре 150 млн °C (в десять раз жарче, чем на Солнце) начинается термоядерная реакция. Дейтерий и тритий сливаются и образуют атом гелия-4 и один нейтрон. Нейтроны вылетают за пределы магнитной ловушки и, сталкиваясь со стенками реактора, нагревают воду внутри них. В результате образуется пар, который вращает турбины.

Макет реактора ITER

(Фото: ITER)

Первую плазму на реакторе ITER планируют получить сразу после окончания строительства, в 2025 году. Однако эксперименты с термоядерной реакцией проведут только в 2035 году. Если они пройдут успешно, начнется выпуск термоядерных реакторов DEMO, которые можно будет использовать в коммерческих целях. ITER не единственный в мире проект, цель которого — получить термоядерную энергию. Токамаки есть в Китае, Великобритании и США.

Некоторые компании предлагают и другие типы реакторов. Основной конкурент токамака — стеллератор Wendelstein 7-X, который построили в Институте физики плазмы им. Макса Планка в немецком Грайфсвальде. Если токамак удерживает плазму в центре при помощи мощных магнитов, то стеллератор делает это благодаря своей сложной форме, напоминающей объемную ленту Мебиуса.

Макет стеллератора. Желтым показана плазма, синим — магнитное поле

(Фото: Max-Planck Institut für Plasmaphysik)

Американский стартап TAE Technologies (ранее Tri Alpha Energy) предложил реактор вытянутой формы. В качестве топлива компания использует водород и бор-11. При взаимодействии эти химические элементы не образуют нейтроны, а значит, не создают радиацию. Топливо на большой скорости подается в реактор с двух сторон. От столкновения оно нагревается и превращается в плазму. Минус такого устройства в том, что для его работы нужна очень высокая температура, примерно в 3 млрд °C.

Еще один вид реактора разрабатывает канадская компания General Fusion. Он представляет собой сферу, внутри которой находится расплавленный свинец. К устройству подключены паровые молотки, которые синхронно бьют по сплаву. В металле есть небольшой желобок, в который загружают горячую смесь дейтерия и трития. При каждом ударе молотков происходит микровзрыв, который провоцирует термоядерную реакцию.

Индустрия 4.0

Что такое индустрия 4.0 и что нужно о ней знать

Разработка недели: самовосстанавливающийся материал на основе кальмара

Ученые из американского Университета Пенсильвании и немецкого Института интеллектуальных систем им. Макса Планка создали самовосстанавливающийся материал на основе зубов кальмара. Разработка в первую очередь пригодится при производстве автоматических приводов, которые часто ломаются из-за того, что постоянно находится в движении.

Зубы кальмаров состоят из твердых и мягких компонентов, а также особых белков, которые восстанавливают поврежденный зуб. Ученые выделили это вещество и при помощи бактериального биореактора создали синтетический полимер. Если нагреть это вещество, оно может «залечить» раны и вернуться в исходную форму за несколько секунд. Еще одно преимущество материала в том, что он биоразлагаемый и не наносит вреда окружающей среде.

См. также

Шаг 7: Запускаем реактор

Пришло время включить реактор (не забудьте установить смотровые стекла покрытые свинцом!). Включите форвакуумный насос и подождите, пока объём камеры не будет откачен на предварительный вакуум. Запустите диффузионный насос и подождите, пока он полностью разогреется и достигнет рабочего режима.

Перекройте доступ вакуумной системы к рабочему объёму камеры.

Чуть-чуть приоткройте игольчатый клапан в баке дейтерия.

Поднимайте высокое напряжение, пока вы не увидите плазму (она сформируется при 40 кВ). Помните о правилах электробезопасности.

Если всё пойдет хорошо, вы зафиксируете всплеск нейтронов.

Требуется много терпение, чтобы повысить давление до надлежащего уровня, но после того, как всё получится, управлять им станет довольно просто.

Спасибо за внимание!

( Специально для МозгоЧинов #Build-A-Fusion-Reactor» target=»_blank»>)

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать Обнинская АЭС.


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт•ч/год),
  2. Франция(426,8 млрд кВт•ч/год),
  3. Япония (273,8 млрд кВт•ч/год),
  4. Германия (158,4 млрд кВт•ч/год),
  5. Россия (154,7 млрдкВт•ч/год).

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция — принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Далее, вокруг отражателя устанавливается теплоизоляция. Поверх теплоизоляции находится защитная оболочка из бетона, которая задерживает радиоактивные вещества и не пропускает их в окружающее пространство.

Создание энергии[править | править код]

Генерация энергии осуществляется за счёт двух реакций: дейтерий + тритий и дейтерий + гелий-3. Первая для запуска требует 40 000 000 энергии, после чего реактор будет потреблять 4096 еЭ/т в течение 128 тактов (то есть 524 288 еЭ) на создание каждой капсулы плазмы. Во втором случае для запуска требуется 60 000 000 еЭ и 2048 еЭ/т в течение 128 тактов (262 144 еЭ) на поддержание каждой реакции синтеза плазмы. Второй способ выгоднее, но требует минимум 6 . Полученные капсулы с плазмой нужно использовать для получения энергии в плазменном генераторе. Каждая капсула приносит 8 192 000 энергии, что гораздо больше, чем тратится на их синтез. Но, если реакция остановится (например, для её продолжения не будет ресурсов или энергии), то при следующем запуске вам придётся опять затратить большое количество энергии при старте. Поэтому выгода будет только в том случае, если за один запуск обрабатывать большое количество материала.

Ингредиенты Процесс Результат
Капсула с тритием,Капсула с дейтерием

Старт: 40 000 000 еЭ

Энергия: 524 288 еЭ

Потребление: 4096 еЭ/т

Время: 6,4 сек.

Капсула сгелиевой плазмой
Капсула с гелием-3,Капсула с дейтерием

Старт: 60 000 000 еЭ

Энергия: 262 144 еЭ

Потребление: 2048 еЭ/т

Время: 6,4 сек.

K-STAR

K-STAR – корейский сверхпроводящий токамак Национального института термоядерных исследований (NFRI) в Тэджоне, который произвел свою первую плазму в середине 2008 года. Это пилотный проект ITER, являющийся результатом международного сотрудничества. Токамак радиусом 1,8 м – первый реактор, использующий сверхпроводящие магниты Nb3Sn, такие же, которые планируется использовать в ITER. В ходе первого этапа, завершившегося к 2012 году, K-STAR должен был доказать жизнеспособность базовых технологий и достигнуть плазменных импульсов длительностью до 20 с. На втором этапе (2013–2017) проводится его модернизация для изучения длинных импульсов до 300 с в режиме H и перехода к высокопроизводительному AT-режиму. Целью третьей фазы (2018–2023) является достижение высокой производительности и эффективности в режиме длительных импульсов. На 4 этапе (2023–2025) будут испытываться технологии DEMO. Устройство не способно работать с тритием и D-T топливо не использует.

Как это работает

Термоядерная энергетика пытается скопировать процессы, которые происходят внутри звезд: там при сверхвысоких температурах и давлении сливаются ядра изотопов водорода и выделяют огромную энергию.

Чтобы достичь этого на Земле, необходимы особые условия (например, температура в 10 раз большая, чем в ядре Солнца) – их создают в термоядерном реакторе. В его основе, по крайней мере, по самой распространенной схеме, которую использует ITER, – токамак, по форме напоминающая бублик вакуумная камера с магнитными катушками. Первые токамаки появились в СССР еще в 1960-х, для ITER построят самый большой токамак в мире объемом 830 м3.

В токамак запускают дейтерий и тритий и разогревают до температур свыше 150 миллионов градусов Цельсия. Газ превращается в плазму, а чтобы плазма такой температуры не сожгла все вокруг, ее удерживают на расстоянии от стенок магнитным полем; через саму плазму пропускают ток. Мощное магнитное поле обеспечивают в свою очередь сверхпроводящие магниты, которые нужно охладить в вакуумной камере до практически абсолютного нуля – 268°C. Физически же они будут находиться буквально в полуметре от раскаленной до 150 000 000°C плазмы. Обеспечить беспроблемную работу техники в таких условиях – сложнейшая инженерная задача.

Современные токамаки выделяют меньше энергии, чем расходуется на нагрев системы, для генерации их пока приспособить не получается. Лучший результат – у британского JET, который возвращает до 67% затраченной энергии. За счет масштаба конструкции ITER (это будет громадина высотой с девятиэтажный дом, примерно такого же диаметра) создатели рассчитывают, что реактор сможет выделять энергии в десять раз больше, чем расходуется на нагрев плазмы (отдавать 500 МВт с 50 МВт). Этот момент – принципиальный для построения термоядерных электростанций в будущем.

Но ITER не будет производить электричество: вся выделенная энергия уйдет лишь на нагрев стенок токамака. Хотя если эксперименты с ITER пройдут успешно, следующим этапом (с 2030 года) станет прототип термоядерного реактора для электростанций, DEMO – они должны появиться в 2040-50-х годах. О желании построить такие реакторы заявили Индия, Россия, Южная Корея и Япония.

Модель реактора ITER

Важнейшая цель ITER – показать возможность генерации энергии термоядерным реактором. Для этого необходимо будет обеспечить управляемое производство “горящей плазмы” (с ней реакция синтеза будет самоподдерживающейся) и достичь самовоспроизводства трития, достаточно редкого изотопа, использующегося в качестве топлива. Кроме того, ITER должен продемонстрировать, насколько готовы современные технологии к строительству коммерческих термоядерных электростанций, а также позволит оценить их надежность и безопасность.

Безопасность – одно из ключевых преимуществ термоядерных реакторов над привычными ядерными. Здесь невозможна цепная реакция с последствиями: в случае проблем плазма мгновенно остынет и затухнет, отмечают в ITER.

Куда лучше обстоят дела и с радиоактивностью топлива: тритий, слабый источник бета-излучения, будет генерироваться прямо в реакторе. Конструкция реактора при этом предполагает несколько барьеров для возникающих в процессе работы радиоактивных веществ. Период полураспада радиоактивных отходов для большинства изотопов в термоядерном реакторе составляет около 10 лет, тогда как для отдельных компонентов отработанного ядерного топлива эти значения могут составлять тысячи и даже миллионы лет.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Статья недели: ИИ помог обнаружить китайских рыбаков-браконьеров

Ученые из Южной Кореи, Японии, Австралии и США смогли обнаружить 900 китайских судов, которые незаконно ловили тихоокеанского кальмара в водах КНДР. Согласно резолюции Совбеза ООН, с 2017 года эта страна не должна разрешать иностранным судам рыбачить на своей территории.

Научный журнал Science Advances опубликовал подробную статью об этом. Чтобы обнаружить браконьеров, ученые использовали Автоматическую идентификационную систему (АИС), а также несколько видов спутниковых снимков. С помощью АИС корабли передают данные о своем местоположении и курсе. Этой системой пользуются не все суда, поэтому основную информацию исследователи получили, проанализировав изображения. Браконьеры часто используют яркие лампы, чтобы ночью привлечь кальмаров на поверхность воды. Ученые натренировали нейросеть распознавать свет на поверхности океана. Затем информацию проверяли при помощи снимков высокой четкости. Помимо крупных судов, нейросеть также нашла 3 тыс. небольших рыбацких лодок.

Ученые считают, что их метод поможет бороться с браконьерством, а значит, защитить многие виды рыб от угрозы вымирания.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

5-й способ. Устанавливаем новый аккумулятор

Данный метод открывания дверей автомобиля без ключей используется тогда, когда аккумулятор разряжен или в машине отсутствует электропитание, из-за чего открыть дверь машины благодаря центральному замку не получается. Также в случаях, если замки не работают или замерзли.

Так как открыть заклинивший замок входной двери? Необходимо подобраться к тросу замка капота, который чаще всего от замка капота идет к левому крылу, а потом в салон машины. Затем зацепляем трос проволокой около левой фары или радиатора и резким движением дергаем. Около автомобиля заранее необходимо поставить аккумулятор. Потом подключаем аккумулятор и при помощи ключа открываем машину.

Похожие новости

26/01/2019

Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. ​Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.

1592

24/10/2019

Исследовательская работа — часть любого бизнеса, и на каждом этапе исследования различаются и масштабами, и задачами. Но как вычислить эффект, который они производят? О разных видах исследований, типичных проблемах при их проведении и специфике Росатома рассказывает президент корпоративного и правительственного сектора аналитической компании Elsevier в России Сергей Ревякин.

1048

12/04/2019

​12 апреля 1961 года Юрий Гагарин совершил первый полет в космос — добродушная улыбка летчика и его бодрое «Поехали!» стали триумфом советской космонавтики. Чтобы этот полет состоялся, ученые по всей стране ломали головы, как же сделать такую ракету, которая бы выдержала все опасности неизведанного космоса, — здесь не обошлось без идей ученых Сибирского отделения Академии наук.

1234

29/10/2018

​В программе ОТР «Большая наука. Великое в малом» директор Института ядерной физики имени Г. И. Будкера СО РАН академик Павел Логачев рассказал о том, какую роль в развитии научных исследований играет «Фабрика С-тау» и чем обусловлено ее название.

1278

11/12/2018

​Академик РАН, научный руководитель Института теплофизики им. С. С. Кутателадзе СО РАН Сергей Алексеенко стал в этом году лауреатом международной премии «Глобальная энергия». Награда присуждается ему за подготовку теплофизических основ для создания современных энергетических и энергосберегающих технологий, которые позволяют проектировать экологически безопасные тепловые электростанции (за счет моделирования процессов горения газа, угля и жидкого топлива).

1841

16/04/2019

Зачем нужен Сибирский национальный центр высокопроизводительных вычислений, обработки и хранения данных — СНЦ ВВОД? Откуда придут деньги на его создание? Как этот проект связан с синхротроном СКИФ? С другими проектами «Академгородка 2.

1456

28/02/2018

​8 февраля в ходе визита Президента РФ Владимира Владимировича Путина в Новосибирск ученые обсуждали необходимость создания в России новых источников синхротронного излучения (СИ). Кому, кроме физиков, нужны такие установки и чем они отличаются от коллайдеров? Что можно изучать с их помощью? В каких ещё странах есть источники СИ, и зачем они нужны в России? Об этом «Науке в Сибири» рассказал научный сотрудник Института геологии и минералогии им.

5330

20/11/2019

​Байкальский нейтринный эксперимент послужил к созданию одного из ведущих в мире центров исследования космических лучей — TAIGA. Сейчас это уже несколько разнообразных установок, и работы только ширятся.

651

29/12/2017

​1. Сельское хозяйство. В 2010-е гг. Россия вернула себе позицию крупнейшего сельхозэкспортёра в мире, которую она занимала ещё в начале XX века. При этом Россия занимает лишь четвёртое место в мире по площади обрабатываемых сельхозземель.

2068

K-DEMO

Разработанный в сотрудничестве с Принстонской лабораторией физики плазмы (PPPL) Министерства энергетики США и южно-корейским институтом NFRI, K-DEMO должен стать следующим шагом на пути создания коммерческих реакторов после ITER, и будет первой электростанцией, способной генерировать мощность в электрическую сеть, а именно 1 млн кВт в течение нескольких недель. Его диаметр составит 6,65 м, и он будет иметь модуль зоны воспроизводства, создаваемый в рамках проекта DEMO. Министерство образования, науки и технологий Кореи планирует инвестировать в него около триллиона корейских вон (941 млн $).

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Низкоэнергетические ядерные реакции

Инициированные претензиями на «холодный термоядерный синтез», исследования продолжились в области низкоэнергетических ядерных реакций, имеющих некоторую эмпирическую поддержку, но не общепринятое научное объяснение. По-видимому, для создания и захвата нейтронов используются слабые ядерные взаимодействия (а не мощная сила, как при делении ядер или их синтезе). Эксперименты включают проникновение водорода или дейтерия через каталитический слой и реакцию с металлом. Исследователи сообщают о наблюдаемом высвобождении энергии. Основным практическим примером является взаимодействие водорода с порошком никеля с выделением тепла, количество которого больше, чем может дать любая химическая реакция.

Шаг 1: Сборка вакуумной камеры

Для проекта потребуется изготовить вакуумную камеру высокого качества.

Приобретите две полусферы из нержавеющей стали, фланцы для вакуумных систем. Просверлим отверстия для вспомогательных фланцев, а затем сварим всё это вместе. Между фланцами располагаются уплотнительные кольца из мягкого металла. Если вы раньше никогда не варили, было бы разумно, чтобы кто-то с опытом сделал эту работу за вас. Поскольку сварные швы должны быть безупречны и без дефектов. После тщательно очистите камеру от отпечатков пальцев. Поскольку они будут загрязнять вакуум и будет трудно поддерживать стабильность плазмы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector