Школьная энциклопедия
Содержание:
- Дальность действия РЛС
- Применение радиолокаторов
- Классификация
- ЗИЛ-164 Расход топлива Размеры Грузоподъемность Объем бака История
- Эстафета переходит в Германию
- Модификации
- Вторая молодость
- Основные методы радиолокации
- Как работает радиолокатор
- Физика процесса: эффект Доплера, или «умное эхо»
- История
- Примеры ответчиков
- Историческая справка
- Системы опознавания
- Вторичный радиолокатор
- Как работает радиолокатор
- Заключение
Дальность действия РЛС
Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, мощности излучаемого сигнала, и чувствительности приёмника системы.
В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:
- Dmax=PnDaSaσ(4π)2Pn.min4{\displaystyle D_{max}={\sqrt{\frac {P_{n}D_{a}S_{a}\sigma }{\left(4\pi \right)^{2}P_{n.min}}}}},
где:
- Pn{\displaystyle \;P_{n}} — мощность генератора;
- Da{\displaystyle \;D_{a}} — коэффициент направленного действия антенны;
- Sa{\displaystyle \;S_{a}} — эффективная площадь антенны;
- σ{\displaystyle \;\sigma } — эффективная площадь рассеяния цели;
- Pn.min{\displaystyle \;P_{n.min}} — минимальная чувствительность приёмника.
При наличии шумов и помех дальность действия РЛС уменьшается.
Влияние помех
Работа нескольких РЛС в одном частотном диапазоне
На загруженных участках, где одновременно используются многочисленные РЛС (например, морские порты) вероятны совпадения частотных диапазонов. Это приводит к приему РЛС сигнала другой РЛС. В результате на экране появляются дополнительные точки, бросающиеся в глаза из-за своей геометрической правильности. Эффект может быть убран переходом на другую рабочую частоту.
Мнимое изображение
При отражении радиосигнала от массивного объекта возможно дальнейшее распространение к меньшим объектам с последующим отражением и попаданием в РЛС. Таким образом, путь, который прошел сигнал становится больше и на экране появляется мнимое изображение объекта, который на самом деле находится в другом месте
Такой эффект должен приниматься во внимание при нахождении вблизи крупных отражающих объектов, таких как мосты, гидротехнические сооружения и крупные суда.
Многократное отражение
При размещении РЛС на большом судне возможен эффект многократного отражения сигнала. Сигнал РЛС отражается от близкого объекта, частично попадает обратно в РЛС, а частично отражается от корпуса суда. Таких отражений может быть много, амплитуда при каждом отражении уменьшается и сигнал будет восприниматься до тех пор, пока не будет достигнута пороговая чувствительность приемника. На экране радара будут видны несколько уменьшающихся с каждым разом объектов. Расстояние между ними пропорционально расстоянию от РЛС до объекта.
Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды.
Наличие атмосферы приводит к искривлению траектории распространения радиоволн (явление рефракции). Характер рефракции зависит от изменения коэффициента преломления атмосферы при изменении высоты. Из-за этого траектория распространения радиоволн искривляется в сторону поверхности земли.
Применение радиолокаторов
Впервые радиолокационные станции начали применяться во время Второй мировой войны для обнаружения военных самолётов, кораблей и подводных лодок.
Так в конце декабря 1943 г. радиолокаторы, установленные на английских кораблях, помогли обнаружить фашистский линкор, вышедший ночью из порта Альтенфиорд в Норвегии, чтобы перехватить военные суда. Огонь по линкору вёлся очень точно, и вскоре он пошёл ко дну.
Первые РЛС были не очень совершенными, в отличие от современных, надёжно защищающих воздушное пространство от воздушных налётов и ракетного нападения, распознающих практически любые военные объекты на суше и на море. Радиолокационное наведение применяется в самонаводящихся ракетах для распознавания местности. РЛС осуществляют слежение за полётами межконтинентальных ракет.
РЛС нашли своё применение и в мирной жизни. Без них не могут обходиться лоцманы, проводящие корабли через узкие проливы, диспетчеры в аэропортах, руководящие полётами гражданских самолётов. Они незаменимы при плавании в условиях ограниченной видимости – ночью или при плохой погоде. С их помощью определяют рельеф дна морей и океанов, исследуют загрязнения их поверхностей. Их используют метеорологи для определения грозовых фронтов, измерения скорости ветра и облаков. На рыболовных судах радиолокаторы помогают обнаруживать косяки рыбы.
Очень часто радиолокаторы, или радиолокационные станции (РЛС), называют радарами. И хоть сейчас это слово стало самостоятельным, на самом деле это аббревиатура, возникшая из английских слов «radiodetectionandranging», что означает «радиообнаружение и дальнометрия» и отражает суть радиолокации.
- < Назад
- Вперёд >
Классификация
Выделяют два вида радиолокации:
- Пассивная радиолокация основана на приёме собственного излучения объекта;
- При активной радиолокации радар излучает свой собственный зондирующий сигнал и принимает его отражённым от цели. В зависимости от параметров принятого сигнала определяются характеристики цели.
Активная радиолокация бывает двух видов:
Активная радиолокация с пассивным ответом
- С активным ответом — на объекте предполагается наличие радиопередатчика (ответчика), который излучает радиоволны в ответ на принятый сигнал. Активный ответ применяется для опознавания объектов (свой-чужой), дистанционного управления, а также для получения от них дополнительной информации (например, количество топлива, тип объекта и т. д.);
- С пассивным ответом — запросный сигнал отражается от объекта и воспринимается в пункте приёма как ответный.
Для просмотра окружающего пространства РЛС использует различные способы обзора за счёт перемещения направленного луча антенны РЛС:
- круговой;
- секторный;
- обзор по винтовой линии;
- конический;
- по спирали;
- «V» обзор;
- линейный (самолёты ДРЛО типа Ан-71 и А-50 (Россия) или американские с системой Авакс).
В соответствии с видом излучения РЛС делятся на:
- РЛС непрерывного излучения;
- Импульсные РЛС.
ЗИЛ-164 Расход топлива Размеры Грузоподъемность Объем бака История
Эстафета переходит в Германию
В 1904 году немец Христиан Хюльсмейер запатентовал устройство под названием телемобилоскоп. Этот прибор предполагалось использовать в судоходстве для обнаружения кораблей в условиях плохой видимости. Телемобилескоп был построен на основе искрового генератора радиоволн и в своей последней версии мог находить суда на расстоянии до 3 км. Однако устройством не заинтересовались ни гражданские, ни военные, предпочитая по старинке пользоваться на судах паровыми ревунами. По сути прибор Хюльсмайера был еще не радаром, а радиодетектором. Существовавшие на тот момент технологии еще не позволяли построить полноценный радиолокатор.
Схема установки антенны радиолокатора «Зеетакт» на немецкой подводной лодке
В 1920-1930-е годы немецкие ученые и инженеры достигли больших успехов в развитии военной радиолокации. В 1935 году физик Рудольф Кунхольд из Института технологий связи германских ВМС представил радиолокационный прибор с электронно-лучевым дисплеем. К концу 1930-х на его основе были созданы оперативные радиолокаторы «Зеетакт» для флота и «Фрейя» для ПВО.
Однако, несмотря на значительные научные результаты, руководство Третьего рейха рассчитывало на блицкриг и не спешило развивать национальную сеть радаров, считая их преимущественно оборонительными средствами. К 1940 году Германия располагала лишь небольшой сетью станций дальнего обнаружения. И только к концу 1943 года территорию Германии полностью накрыли защитным радиолокационным «колпаком».
Модификации
ВОГ-25ИН
Индекс ГРАУ — 7П17И
. Практический выстрел с гранатой в инертном снаряжении, применяется для тренировок и обучения стрельбе,а также приведения ГП-25 к нормальному бою и проверке боя.
ВУС-25
(индекс 7П44У) — учебная граната, применяется для тренировок и обучения.
ВОГ-25П
Индекс ГРАУ — 7П24
, шифр «Подкидыш». Выстрел с «подпрыгивающей» осколочной гранатой, оснащённый взрывателемВГМ-П с вышибным зарядом и пиротехническим замедлителем. Принят на вооружение в 1979 году.
При попадании в преграду выстрел подскакивает и взрывается в воздухе на высоте около 1,5 метров. В сравнении с ВОГ-25, «подпрыгивающий» боеприпас позволяет эффективнее поражать лежащего и находящегося в траншее или окопе противника.
Описание:
- Калибр 40 мм
- Начальная скорость 76 м/с
- Масса 275 г
- Масса ВВ 42 г
- Длина 125 мм
- Дистанция взведения 10 — 40 м
- Время самоликвидации не менее 14 с
- Средняя высота разрыва 75 см
«Гвоздь»
40-мм выстрел «Гвоздь»
с газовой гранатой — предназначен для создания газового облака с непереносимо-допустимой концентрацией ирританта (раздражающего вещества) CS. Состоит на вооружении МВД РФ.
40-мм выстрел с дымовой гранатой ВДГ-40 «Нагар»
— применяется для постановки дымовой завесы.
ВОГ-25М
Модернизированный вариант выстрела ВОГ-25 с осколочной гранатой, частично унифицирован с ВОГ-25ПМ. Разработан в начале 2000-х годов.
ВОГ-25ПМ
Модернизированный вариант выстрела ВОГ-25П с «подпрыгивающей» осколочной гранатой, частично унифицирован с ВОГ-25М. Разработан в начале 2000-х годов.
АСЗ-40
40-мм выстрел акустического действия АСЗ-40 «Свирель»
. Светозвуковая граната нелетального действия служит для временного подавления психоволевой устойчивости живой силы противника. Состоит на вооружении МВД РФ.
В настоящее время имеет место тенденция к дальнейшему расширению типов боеприпасов. Так, на международной оружейной выставке «Defendory-2006» были представлены новые виды гранат:
- ВГ-40МД — выстрел с дымовой гранатой
- ВГС-40-1 — выстрел с сигнальной гранатой (красный огонь)
- ВГС-40-2 — выстрел с сигнальной гранатой (зеленый огонь)
- ВГ-40И — выстрел с осветительной гранатой
Однако нет сведений, что эти боеприпасы были приняты на вооружение или находятся в серийном производстве.
Вторая молодость
Строительный самосвал ЗИЛ-ММЗ-585Л 1963 года выпуска — сегодня настоящая музейная диковинка. Работали машины на износ — производители не закладывали в них тот ресурс, который они реально отхаживали. А поскольку вся спецтехника в Союзе была ведомственной, за прошедшие 50 лет большинство экземпляров отправились в металлолом. Автомобиль, сохранившейся сегодня в красноярском клубе «Авто-ретро», эта участь миновала по счастливой случайности: после списания он оказался в руках у коллекционера-энтузиаста Павла Мезина.
С этого момента для старенького ЗИЛа началась вторая молодость: сегодня он уже не таскает на себе тяжелые грузы, не переживает кустарных ремонтов, а чинно и степенно путешествует по городским выставкам ретротранспорта, постепенно обретая оригинальный заводской внешний вид.
Основные методы радиолокации
РЛС непрерывного излучения
Используются в основном для определения радиальной скорости движущегося объекта (использует эффект Доплера). Достоинством РЛС такого типа является дешевизна и простота использования, однако в таких РЛС сильно затруднено измерение расстояния до объекта.
Пример: простейший радар для определения скорости автомобиля.
Импульсный метод радиолокации
При импульсном методе радиолокации передатчики генерируют колебания в виде кратковременных импульсов, за которыми следуют сравнительно длительные паузы. Причём длительность паузы выбирается исходя из дальности действия РЛС Dmax.
T>2Dmaxc{\displaystyle T>{2D_{max} \over c}}
Сущность метода состоит в следующем:
Передающее устройство РЛС излучает энергию не непрерывно, а кратковременно, строго периодически повторяющимися импульсами, в паузах между которыми происходит приём отражённых импульсов приёмным устройством той же РЛС.
Таким образом, импульсная работа РЛС даёт возможность разделить во времени мощный зондирующий импульс, излучаемый передатчиком и значительно менее мощный эхо-сигнал.
Измерение дальности до цели сводится к измерению отрезка времени между моментом излучения импульса и моментом приёма, то есть временем движения импульса до цели и обратно.
Как работает радиолокатор
Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.
Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.
В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:
- импульсные;
- непрерывного действия.
Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.
https://youtube.com/watch?v=EzWo_k1MDuc
Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.
Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.
В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.
Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.
Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.
Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.
Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9—6 м (частота 50—330 МГц) и 0,3—1 м (частота 300—1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5—15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.
Физика процесса: эффект Доплера, или «умное эхо»
Как и любое направление развития науки и техники, радиолокация базируется на некоторых физических основах, позволяющих обеспечивать решение стоящих перед ней задач, а именно: обнаруживать различного рода объекты и определять координаты и параметры их движения с помощью радиоволн.
Использование радиоволн, или, другими словами, электромагнитных колебаний (ЭМК), частотный диапазон которых сосредоточен в пределах от 3 кГц до 300 ГГц, определяет основные преимущества радиолокационных систем (РЛС) перед другими системами локации (оптическими, инфракрасными, ультразвуковыми). В первую очередь, это обусловлено тем, что закономерности распространения радиоволн в однородной среде достаточно стабильны как в любое время суток, так и в любое время года и, следовательно, изменение условий оптической видимости, обусловленных появлением дождя, снега, тумана или изменением времени суток, не нарушает работоспособность РЛС.
Основными закономерностями распространения радиоволн, которые позволяют обнаруживать объекты и измерять координаты и параметры их движения, являются следующие:
– постоянство скорости и прямолинейность распространения радиоволн в однородной среде (при проведении инженерных расчетов скорость распространения радиоволн принимают равной 3·10–8 м/с;
– способность радиоволн отражаться от различных областей пространства, электрические или магнитные параметры которых отличаются от аналогичных параметров среды распространения;
– изменение частоты принимаемого сигнала по отношению к частоте излученного сигнала при относительном движении источника излучения и приемника радиолокационного сигнала.
Последнее свойство радиоволн в радиолокации называют эффектом Доплера по имени австрийского ученого Кристиана Андреаса Доплера, который в 1842 году теоретически обосновал зависимость частоты колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волны и наблюдателя относительно друг друга.
Доплеровский метеорологический радиолокатор
В 1848 году эффект Доплера был уточнен французским физиком Арманом Физо, а в 1900 году – экспериментально проверен русским ученым Аристархом Белопольским на лабораторной установке. В этой связи в научно-технической литературе наименование данного эффекта можно встретить под названием «эффект Доплера – Белопольского».
Для проведения процедуры измерения расстояния до цели РЛС излучает в ее направлении зондирующий сигнал. Данный сигнал доходит до объекта, отражается от него и возвращается обратно к РЛС. Поскольку, как отмечалось ранее, скорость распространения радиосигнала в однородной среде постоянная, то для определения дальности до объекта необходимо зафиксировать момент излучения зондирующего сигнала t и момент приема отраженного сигнала от цели t1. В результате разность (t1 – t) позволяет определить время, в течение которого радиоволна проходит путь от РЛС к цели и обратно, которое равно 2Д, где Д – дальность до объекта (расстояние между РЛС и целью). Разность времен (t1 – t) в радиолокации называют временем запаздывания и обозначают как tд. В результате при известной величине tд можно составить равенство 2Д = Сtд, из которого следует, что дальность до объекта (цели) равна Д = Сtд/2.
Таким образом, подводя итог процедуре измерения дальности до цели, можно констатировать, что для измерения с помощью РЛС расстояния до цели необходимо определить время запаздывания tд, которое при известной скорости распространения радиоволн позволяет определить дальность до нее.
Большой процент объектов радиолокационного наблюдения составляют подвижные или движущиеся цели. К таким целям, например, относятся самолеты, вертолеты, автомобили, люди и т.д. Основным отличительным признаком таких объектов является скорость их движения. Выявить эффект движения цели, как отмечалось ранее, можно, опираясь на эффект Доплера, который позволяет определить радиальную скорость движения цели. То есть частота принимаемых РЛС колебаний от цели, двигающейся ей навстречу, возрастает по сравнению со случаем неподвижной цели и уменьшается при удалении цели от РЛС. Данное изменение частоты принимаемого сигнала называют доплеровским смещением частоты. Величина данного смещения зависит от скорости взаимного движения носителя РЛС и цели. Необходимо заметить, что рассмотренные свойства радиоволн будут проявляться вне зависимости от условий оптической видимости в зоне радиолокационного наблюдения.
История
Корабль в качестве радиолокационного дозора впервые применён в начале Великой Отечественной войны на Черноморском флоте в районе Севастополя. Опытная РЛС Редут-К была установлена на крейсере «Молотов». С 22 июня по 1 ноября 1941 года крейсер базировался в Севастополе, участвуя в ПВО Черноморского флота. 24 июня установлена телефонная связь между кораблём, штабом флота и командным пунктом ПВО, благодаря которой данные станции «Редут-К» сообщались в штаб флота по кабелю. Станция работала иногда по 20 часов в сутки, но ни разу не выходила из строя. В судовом журнале крейсера записано:
С августа 1942 года и по конец 1943 года, в связи с повреждением «Молотова», РЛС работала в Поти в качестве берегового поста наблюдения. С 1 июля 1941 по 18 декабря 1943 года «Редут-К» за 1269 включений обнаружил 9383 самолёта. Командир отряда лёгких сил Черноморского флота Басистый Н. Е. в воспоминаниях упоминает «Редут-К»:
Но несмотря на известное несовершенство, «Редут-К» принёс немалую пользу флоту. Крейсер «Молотов» не раз заблаговременно оповещал корабли в Севастополе и других базах о приближении самолётов противника. Мы не зря гордились этой технической новинкой. |
Массово корабли радиолокационного дозора впервые применены во Второй мировой войне в военно-морских силах США (ВМС США), чтобы помочь союзникам подойти к Японии. Количество радиолокационных дозоров значительно увеличено после первого большого участия японских самолётов-камикадзе в октябре 1944 года в сражении в заливе Лейте. В первую очередь в радиолокационных дозорах, с некоторыми изменениями, применены эскадренные миноносцы типов «Флетчер» и «Аллен М. Самнер». Позже на них установлены дополнительные радары и средства наведения истребителей, вместе с более мощным зенитным вооружением малого калибра для самообороны, как правило, жертвуя торпедными аппаратами, чтобы освободить место для нового вооружения, особенно для радаров обнаружения целей на больших высотах. Развёртываемые на расстоянии от своих сил, которые должны были быть предупреждены с вероятных направлений атак японцев, радиолокационные дозоры кораблей на направлениях ближайших японских аэродромов. Так они обычно из судов первыми обнаруживали подходящие группы камикадзе и часто были ими атакованы с тяжёлыми последствиями.
Наибольшее количество англо-американских корабельных радиолокационных дозоров было в битве за Окинаву. Из 15 РЛС радиолокационного дозора вокруг Окинавы было создано кольцо, чтобы перехватить все возможные подходы к острову и к союзному флоту у острова. Из 101 эскаденных миноносцев, назначенных для радиолокационного дозора, от атак камикадзе 10 потоплены и 32 повреждены. На 88 LCS(L) назначеных пикет станции 2 потоплены и 11 повреждены камикадзе, а из 11 LSM(R) три потопленных и два повреждённых.
Немецкие и японские Второй мировой войны
С 1943 года в Кригсмарине (германский военно-морской флот Третьего рейха) действовало несколько судов наведения ночных истребителей с РЛС обнаружения (Nachtjagdleitschiffe), в том числе второе судно наведения ночных истребителей NJL Togo, которое было с РЛС обнаружения FuMG А1 (Фрейя), с радаром наведения Вюрцбург-Ризе и с оборудованием связи с ночными истребителями. С октября 1943 года NJL Togo в Балтийском море в оперативном подчинении Люфтваффе (германских военно-воздушных сил 1930-х — 40-х годов). В марте 1944 года оно прибыло в Финский залив, чтобы обеспечить прикрытия Таллина и Хельсинки ночной истребительной авиацией, после трёх сильных советских бомбардировок Хельсинки. Кроме того, императорский флот Японии второй мировой войны в первой половине 1945 года немного изменил две подводные лодки типа ha-101 (Sen-Yuso-Sho) для использования как средство радиолокационного обнаружения, но в июне 1945 года снова изменил их в ещё более важные подводные лодки-танкеры[источник не указан 189 дней].
Примеры ответчиков
|
|
||
Модель | Выполняемая функция | Модель | Выполняемая функция |
---|---|---|---|
4205Д-1 | УВД (ICAO), опознавание («40Д»), сопряжение с БСПС | AN/APX-100(V) | опознавание («Mk XII») |
6201Р | ответчик системы опознавания («60Р») | AN/APX-110 | опознавание |
6202Р | ответчик системы опознавания («60Р») | APX-119 | УВД (ICAO), опознавание («Mk XII») |
623-3ДР | запросчик системы опознавания («40Р») | AT 165 | УВД (ICAO) |
ОСА-С | УВД (СНГ, ICAO), сопряжение с БСПС | KT-70 | УВД (ICAO) |
СО-72М-70 | УВД (СНГ, ICAO), опознавание | KT-73 | УВД (ICAO) |
СО-94Р | УВД (СНГ), опознавание | M424 | опознавание («Mk XA») |
СО-96 | УВД (СНГ, ICAO) | RT-1832/APX | опознавание («Мк XII») |
СРО-2 | опознавание («Кремний») | XS-950SI | опознавание |
Историческая справка
На способность радиоволн к отражению указывали великий физик Г. Герц и русский электротехник А.С. Попов еще в конце XIX века. Согласно патенту от 1904 года, первый радар создал немецкий инженер К. Хюльмайер. Прибор, названный им телемобилоскопом, использовался на судах, бороздивших Рейн. В связи с развитием авиационной техники применение радиолокации выглядело очень перспективным в качестве элемента противовоздушной обороны. Исследования в этой области велись передовыми специалистами многих стран мира.
В 1932 году основной принцип радиолокации описал в своих работах научный сотрудник ЛЭФИ (Ленинградского электрофизического института) Павел Кондратьевич Ощепков. Им же в сотрудничестве с коллегами Б.К. Шембель и В.В. Цимбалиным летом 1934 года был продемонстрирован опытный образец радиолокационной установки, обнаружившей цель на высоте 150 м при удалении 600 м. Дальнейшие работы по совершенствованию средств радиолокации сводились к увеличению дальности их действия и повышению точности определения местоположения цели.
Системы опознавания
- Кремний-2 — оригинальная советская система опознавания, разработанная в 50-х годах, которая до сих пор находится на вооружении многих государств мира
- 60 (Пароль) — имитостойкая система, разработана в 1977 году Казанским НИИ радиоэлектроники. В настоящее время находится на вооружении в Российской Федерации.
- 60Р — экспортный вариант системы Пароль
- 40Р — модернизация системы 60Р, имеет улучшенные характеристики
- 40Д — работает в режимах системы Mk-XA (Mk XII), применяемой странами НАТО, и международной системы управления воздушным движением ICAO ATC RBC
- Mark XA (Mk XA) — система стран НАТО
- Mark XII (Mk XII) — система стран НАТО
Вторичный радиолокатор
Вторичная радиолокация используется в авиации для опознавания. Основная особенность — использование активного ответчика на самолётах.
Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора.
В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик, антенна, генераторы азимутальных меток, приёмник, сигнальный процессор, индикатор и самолётный ответчик с антенной.
Передатчик служит для формирования импульсов запроса в антенне на частоте 1030 МГц.
Антенна служит для излучения импульсов запроса и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030 МГц и принимает на частоте 1090 МГц.
Генераторы азимутальных меток служат для генерации азимутальных меток (англ. Azimuth Change Pulse, ACP) и метки Севера (англ. Azimuth Reference Pulse, ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток (для старых систем) или 16384 улучшенных малых азимутальных меток (англ. Improved Azimuth Change pulse, IACP — для новых систем), а также одна метка Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.
Приёмник служит для приёма импульсов на частоте 1090 МГц.
Сигнальный процессор служит для обработки принятых сигналов.
Индикатор служит для отображения обработанной информации.
Самолётный ответчик с антенной служит для передачи содержащего дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.
Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2, отвечают запросившей РЛС серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.
В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту.
Также РЛС может посылать запрос в смешанном режиме, например, Режим А, Режим С, Режим А, Режим С.
Азимут воздушного судна определяется углом поворота антенны, который, в свою очередь, определяется путём подсчёта малых азимутальных меток.
Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3<P2, то есть импульс подавления больше импульсов запроса. В этом случае ответчик запирается и не отвечает на запрос.
Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.
Плюсы вторичной РЛС:
- более высокая точность;
- дополнительная информация о воздушном судне (номер борта, высота);
- малая по сравнению с первичными РЛС мощность излучения;
- большая дальность обнаружения.
Как работает радиолокатор
Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.
Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.
В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:
импульсные;непрерывного действия.
Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.
Антенна РЛС фокусирует электромагнитный сигнал и направляет его, также она улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.
В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.
Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.
Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9—6 м (частота 50—330 МГц) и 0,3—1 м (частота 300—1000 МГц). Для управления за воздушным движением применяется РЛС с длиной волны 7,5—15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.
Заключение
Мы рассмотрели принцип радиотелефонной связи, телевидения и радиолокацию. На следующем уроке обсудим свойства электромагнитных узлов.
Список литературы
- Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
- Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Мнемозина, 2014.
- Кикоин И.К., Кикоин А.К. Физика-9. – М.: Просвещение, 1990.
Домашнее задание
- Дать определение радиотелефонной связи.
- Каков принцип работы радиотелефонной связи?
- Каков принцип работы радиолокатора?
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал Ucheba-legko.ru (Источник).
- Интернет-портал All-he.ru (Источник).
- Интернет-портал Femto.com.ua (Источник).