Нейтронная звезда

Всесильная гравитация

Согласно современной теории эволюции массивные звезды заканчивают свою жизнь колоссальным взрывом, превращающим большую их часть в расширяющуюся газовую туманность. В итоге от гиганта, во много раз превышавшего размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное. Его и назвали нейтронной звездой, полагая, что он состоит главным образом из нейтронов. Вещество нейтронной звезды — самая плотная форма материи (чайная ложка такого суперядра весит около миллиарда тонн).

Очень короткий период излучаемых пульсарами сигналов был первым и самым главным аргументом в пользу того, что это и есть нейтронные звезды, обладающие огромным магнитным полем и вращающиеся с бешеной скоростью. Только плотные и компактные объекты (размером всего несколько десятков километров) с мощным гравитационным полем могут выдерживать такую скорость вращения, не разлетаясь на куски из-за центробежных сил инерции.

Нейтронная звезда состоит из нейтронной жидкости с примесью протонов и электронов. «Ядерная жидкость», очень напоминающая вещество из атомных ядер, в 1014 раз плотнее обычной воды. Это огромное различие вполне объяснимо — ведь атомы состоят в основном из пустого пространства, в котором вокруг крошечного, тяжелого ядра порхают легкие электроны. Ядро содержит почти всю массу, так как протоны и нейтроны в 2 000 раз тяжелее электронов. Экстремальные силы, возникающие при формировании нейтронной звезды, так сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда, почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях нейтронной звезды (как, впрочем, и всех звезд) давление и температура падают, образуя твердую корку толщиной около километра. Как полагают, состоит она в основном из ядер железа

Порядок работы частей и механизмов винтовки

ТОЗ-87, мысли вслух

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

Что происходит внутри космических тяжеловесов

Зная с некоторой точностью физические параметры тела и понимая законы физики, можно построить модель того, какие процессы могут протекать внутри нейтронной звезды.

Итак, верхним ее слоем является тонкая атмосфера. В ее составе преобладает водород и гелий. Затем находится тончайшая внешняя кора, состоящая из атомных ядер и свободных электронов. Чем ближе к центру, тем выше давление. Ученые считают, что следующий слой состоит из свободных нейтронов и электронов. Ядра тяжелых элементов формируют некую структуру. Еще глубже уровень давления настолько мощный, что все протоны и электроны формируют нейтроны, которые могут находиться в качестве квантовой жидкости и быть наделенными параметрами сверхтекучести. Это нулевая вязкость и практически полное отсутствие трения. Она способна протекать куда угодно, через любые отверстия, какого бы размера они не были. Это то же самое, как если из дна целого стакана вытекла бы вода.

А что же в центре этих космических тяжеловесов? Известно, что там крайне экстремальные условия. Сегодня ученые не способны смоделировать в лабораторных условиях центр нейтронной звезды.

Вселенная — настолько необычное место, что никакой писатель-фантаст не сможет придумать того, что в ней происходит на самом деле. Другой яркий пример этому — как ученые нашли планету у уже мертвой звезды.

Памятники БМД-1

Стоял на вооружении

Как астрономы ищут нейтронные звезды?

В Млечном Пути насчитывается не менее 100 миллионов нейтронных звезд, однако большинство из них — древние, холодные звезды, поэтому их очень трудно обнаружить. К счастью, J0740+6620 — это пульсар. Напомним, что пульсарами называют тип быстро вращающейся нейтронной звезды, которая излучает радиоволны и другое электромагнитное излучение. Когда пульсар вращается, эти лучи «пульсируют» с завидной регулярностью, что несколько напоминает ход часов. Большинство нейтронных звезд трудно идентифицировать, но когда радиоволны пульсара проникают через Землю, их становится намного легче обнаружить и изучить.

Столкновение двух нейтронных звезд

Пульсар J0740+6620 обитает в бинарной системе по соседству с белым карликом. Когда белый карлик проходил перед пучком радиоволн нейтронной звезды, астрономы на нашей планете смогли обнаружить небольшую задержку в поступающих радиоволнах. Это произошло потому, что гравитация белого карлика искривляла пространство вокруг него, заставляя проходящие радиоволны перемещаться на одно касание дальше, чем обычно. Измерив это, астрономы смогли рассчитать массу белого карлика. А зная массу одного объекта в бинарной системе, можно легко рассчитать массу другого. Таким образом, исследователи обнаружили, что J0740+6620 является самой массивной нейтронной звездой на сегодняшний день.

Авторы исследования надеются, что их работа поможет ученым в таких областях науки как физика высоких энергий, релятивистская астрофизика и др. А все потому, что помимо свойств нейтронных звезд, перечисленных в статье, при слиянии этих объектов образуются самые тяжелые элементы во Вселенной.

Структура

Систему органов военной полиции составляют центральный орган (Главное управление военной полиции Министерства обороны Российской Федерации), региональные управления в военных округах и в Северном флоте, территориальные органы военной полиции и дисциплинарные воинские части.

Региональные органы

  • Региональное управление военной полиции по Западному военному округу (г. Санкт-Петербург, набережная Обводного канала, д. 32).
  • Региональное управление военной полиции по Южному военному округу (г. Ростов-на-Дону, пр. Будённовский, д. 66).
  • Региональное управление военной полиции по Центральному военному округу (г. Екатеринбург, ул. Восточная, д. 60).
  • Региональное управление военной полиции по Восточному военному округу (г. Хабаровск, ул. Павловича д. 30).
  • Региональное управление военной полиции по Северному флоту (г. Североморск, ул. Восточная, д. 3)

Модули

Открытый вопрос

Всего на сегодняшний день астрономы обнаружили около 1 200 нейтронных звезд. Из них более 1 000 являются радиопульсарами, а остальные просто рентгеновскими источниками. За годы исследований ученые пришли к выводу, что нейтронные звезды настоящие оригиналы. Одни очень яркие и спокойные, другие периодически вспыхивающие и видоизменяющиеся звездотрясениями, третьи существующие в двойных системах. Эти звезды относятся к самым загадочным и неуловимым астрономическим объектам, соединяющим в себе сильнейшие гравитационные и магнитные поля и экстремальные плотности и энергии. И каждое новое открытие из их бурной жизни дает ученым уникальные сведения, необходимые для понимания природы Материи и эволюции Вселенной.

Вселенкий эталон Послать что-нибудь за пределы Солнечной системы очень даже непросто, поэтому вместе с направившимися туда 30 лет назад космическими кораблями «Пионер-10 и -11» земляне отправили и послания братьям по разуму. Нарисовать нечто такое, что будет понятно Внеземному Уму, задача не из простых, более того, еще нужно было указать обратный адрес и дату отправки письма… Насколько доходчиво все это сумели сделать художники, человеку понять трудно, но сама идея использования радиопульсаров для указания места и времени отправки послания гениальна. Прерывистые лучи различной длины, исходящие из точки, символизирующей Солнце, указывают направление и расстояние до ближайших к Земле пульсаров, а прерывистость линии это не что иное, как двоичное обозначение периода их обращения. Самый длинный луч указывает на центр нашей Галактики Млечный Путь. В качестве единицы времени на послании принята частота радиосигнала, испускаемого атомом водорода при смене взаимной ориентации спинов (направление вращения) протона и электрона.

Знаменитые 21 см или 1420 МГц должны знать все разумные существа во Вселенной. По этим ориентирам, указывающим на «радиомаяки» Вселенной, можно будет отыскать землян даже через много миллионов лет, а сравнив записанную частоту пульсаров с текущей, можно будет прикинуть, когда эти мужчина и женщина благословляли в полет первый космический корабль, покинувший пределы Солнечной системы.

Николай Андреев

Токсичность

См. также

Какие виды звёзд существуют

Итак, выделим основные виды звезд:

  • Светила главной последовательности — на этом этапе они проводят до 90% всей своей жизни. Главным образом, основные термоядерные реакции связаны с горением водорода. В результате чего формируется гелиевое ядро.
  • Коричневые карлики — интересный тип субзвёздных объектов. В их ядре также протекают термоядерные реакции, но основе лежит горение лёгких элементов. Например, бора, лития, бериллия или дейтерия. Поэтому тепловыделение и излучение у подобных тел быстро заканчивается. Что, соответственно, приводит к их остыванию, а затем превращению в планетоподобные объекты.
  • Красные карлики отличаются долгой продолжительностью жизни, поскольку горение водорода в них проходит медленно. Вероятно, поэтому красных карликов больше других звёздных тел во Вселенной. Хотя из-за медленных процессов и слабого излучения, они не видны с нашей планеты без специальных приборов.
  • Красные гиганты образуются после того, как сгорит весь водородный запас, что приводит к гелиевой вспышке и расширению звезды.
  • Белые карлики имеют малую массу. Можно сказать, это остаток от красных гигантов, скинувших свою оболочку. При взрыве начинается процесс горения углерода и кислорода. Светило увеличивает атмосферные границы, быстро теряет газ и превращается в белый карлик.
  • Сверхгиганты — массивный тип светил, которые из-за происходящих внутри реакций быстро покидают стадию главной последовательности. Для них характерна низкая температура, но высокий показатель светимости.
  • Переменные звёзды — это те, у которых хотя бы раз за весь жизненный цикл изменялся блеск. Чаще всего это связано с внутренними процессами. Однако и внешние факторы могут повлиять на изменение блеска. К примеру, если звёздный свет пройдёт сквозь гравитационное поле.
  • Главная последовательность
  • Коричневый карлик
  • Проксима Центавра (красный карлик)
  • Белый карлик Сириус B
  • Голубой сверхгигант Ригель
  • Красный гигант и солнце

Помимо этого, выделяют и другие виды звезд:

  • Новые звёзды — это особый тип переменных, с достаточно резким изменением блеска. Собственно говоря, скачки светимости провоцируют вспышки тела с различными амплитудами.
  • Сверхновые — это те, которые на конечном этапе эволюции взрываются. Причем их взрыв или вспышка очень мощные.
  • Гиперновые или проще говоря, большие сверхновые звёзды. После того, как источники поддержания термоядерных реакций иссякают, происходит коллапс. Что интересно, сила и мощность их неминуемого взрыва превышает обычных сверхновых приблизительно в 100 раз.
  • LBV (Яркие голубые переменные) или переменные типа S Золотой Рыбы являются пульсирующими гипергигантами. Для них свойственны неправильные изменения блеска с колебаниями от 1 до 7 m. Правда, это очень редкие и недолго живущие звезды, которые всегда окружают туманности.
  • ULX (Ультраяркие рентгеновские источники) — космические объекты, обладающие сильным рентгеновским излучением. Их переменность может варьироваться от секунд до нескольких лет. Вероятно, что их источником излучения является чёрная дыра. На самом деле, мало изучены, редкие.
  • Нейтронные звёзды, на самом деле, представляют собой образования из нейтронов (нейтральных субатомных частиц). Поскольку эти частицы сильно сжимаются силами гравитации, то плотность светил также очень высокая. Между прочим, её часть сравнивают со средней плотностью атомного ядра. И это при том, что радиус нейтронных объектов составляет от 10 до 20 км, а масса равна примерно 1,5 солнечных масс.
  • Двойные звёзды или системы отличаются, главным образом, тем, что состоят их пары светил, связанных между собой силами гравитации. К удивлению, наша Галактика наполовину состоит именно из двойных звёзд.
  • Уникальные (объект Стефенсона-Сандьюлика) — это двойная затменная система звёзд. Один из компонентов представляет массивное светило с высокой температурой и светимостью, а другой небольшое тело (может быть нейтронным образованием или даже чёрной дырой). В результате взаимодействия компонентов производится сильнейшее рентгеновское излучение. На данным момент, к уникальным относится лишь одна система SS 433.
  • Взрыв гиперновой
  • Нейтронная звезда
  • Двойная звезда Сириус
  • Объект Стефенсона-Сандьюлика (SS 433)

Как видно, виды звёзд нашей Вселенной могут быть разные. Стоит отметить, что они отличаются друг от друга по своему звёздному размеру и массе, составу, температуре, расстоянию до нас и другим характеристикам. Но несмотря на это, среди всех небесных тел они носят гордое название — звезда.

Океан и лёд

Земные океаны сейчас не замерзают, за исключением Северного Ледовитого. Этим они отличаются от океана Европы. Там бы давно начали искать жизнь, если бы не надо было тащить в окрестности Юпитера буровую установку: вся Европа покрыта толстым слоем льда — как старушка Европа на Земле в разгар ледникового периода. Может ли быть самый странный лёд на поверхности самого странного океана?
Да.

Но. Для этого нужно, чтобы нейтронная звезда была ещё более странной — чтобы она была магнитаром.

Про магнитары надо запомнить, во‑первых, что они пишутся через букву «и» (если, конечно, вы по какой-либо причине не пишете «магнЕтосфера»). А во‑вторых, что вблизи поверхности у них всегда сильное магнитное поле. Примерно в миллион миллиардов раз больше, чем на Земле. И такое поле начинает «руководить» веществом.

Рассмотрим молодой магнитар. На поверхности у него жарко: три-четыре миллиона градусов. Но поверхность твёрдая. Начинаем углубляться — температура быстро растёт. Уже на глубине семь сантиметров (меньше штыка лопаты) она такая высокая, что может расплавить вещество. Значит, у такого магнитара есть океан, который сверху покрыт тонким (но очень плотным) льдом.

Железные «воды» подо льдом темны и неспокойны. Внешняя часть ­океана бурлит — тепло горячих недр передаётся поверхности конвекцией. Если магнитар вспыхивает, то, веро­ятно, лёд ломается, и на поверхности океана плавают «льдины» плотностью в тысячи раз больше, чем у стали.

Рождённая на кончике пера

Открытие в 1932 году новой элементарной частицы — нейтрона заставило астрофизиков задуматься над тем, какую роль он может играть в эволюции звезд. Два года спустя было высказано предположение о том, что взрывы сверхновых звезд связаны с превращением обычных звезд в нейтронные.ции Затем были выполнены расчеты структуры и параметров последних, и стало ясно, что если небольшие звезды (типа нашего Солнца) в конце своей эволюпревращаются в белых карликов, то более тяжелые становятся нейтронными.

В августе 1967 года радиоастрономы при изучении мерцаний космических радиоисточников обнаружили странные сигналы — фиксировались очень короткие, длительностью около 50 миллисекунд, импульсы радиоизлучения, повторявшиеся через строго определенный интервал времени (порядка одной секунды). Это было совершенно не похоже на обычную хаотическую картину случайных нерегулярных колебаний радиоизлучения. После тщательной проверки всей аппаратуры пришла уверенность, что импульсы имеют внеземное происхождение. Астрономов трудно удивить объектами, излучающими с переменной интенсивностью, но в данном случае период был столь мал, а сигналы — столь регулярны, что ученые всерьез предположили, что они могут быть весточками от внеземных цивилизаций. А потому первый пульсар получил название LGM-1 (от английского Little Green Men — «Маленькие Зеленые Человечки»), хотя попытки найти какой-либо смысл в принимаемых импульсах окончились безрезультатно. Вскоре были обнаружены еще 3 пульсирующих радиоисточника. Их период опять оказался много меньше характерных времен колебания и вращения всех известных астрономических объектов. Из-за импульсного характера излучения новые объекты стали называть пульсарами. Это открытие буквально всколыхнуло астрономию, и из многих радиообсерваторий начали поступать сообщения об обнаружении пульсаров. После открытия пульсара в Крабовидной Туманности, возникшей из-за взрыва сверхновой в 1054 году (эта звезда была видна днем, о чем упоминают в своих летописях китайцы, арабы и североамериканцы), стало ясно, что пульсары каким-то образом связаны с вспышками сверхновых звезд. Скорее всего, сигналы шли от объекта, оставшегося после взрыва. Прошло немало времени, прежде чем астрофизики поняли, что пульсары — это и есть быстро вращающиеся нейтронные звезды, которые они так долго искали.

Способны принимать к себе планеты

Нейтронные, впрочем как и иные типы, умеют не только принимать планеты, но и заводить собственную систему. Планеты будут находиться в двойной звездной системе звезд. Такая звездочка в двойной системе обладает способностью целиком уничтожить атмосферу своего партнера, оставить лишь пустую массу. Именно такую массу ученые склонны рассматривать либо как планету, либо как объект звездного происхождения.

Подобные планетные системы, которые были подтверждены, имеются, но в малом количестве, всего лишь две. Первая состоит из трех планет: Полтергейст, Фобетор, Драугр. А вторая система содержит всего лишь один внесолнечный объект. 

Может существовать жизнь на такой планете? До недавнего времени считалось, что жизни на таких планетах не может быть. Так считали, потому что звезды  такого типа могут излучать вредные рентгеновские лучи, которые могут убить все живое, а именно разрушить атмосферу планеты. Но, изучив подробнее, ученые узнали, что на таких планетах более толстая атмосферная оболочка. Именно это и послужило для предположения о наличии жизни на этих объектах. Единственное, что можно ожидать, это очень темная поверхность, а также давление выше, чем земное. По предположениям ученых жизнь может быть похожей на земных хемотрофов. Это такие организмы, которые окисляют химические соединения, а также могут воспринимать опасные лучи. Но, нельзя абсолютно отрицать наличие более сложных организмов.

Знаки различия

История открытия

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды — один из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В декабре 1933 года на съезде Американского физического общества (15—16 декабря 1933 года) астрономы Вальтер Бааде и Фриц Цвикки сделали первое строгое предсказание существования нейтронных звёзд. В частности, они выдвинули обоснованную точку зрения о том, что нейтронная звезда может образоваться в результате взрыва сверхновой. Теоретические расчёты показали, что излучение нейтронной звезды слишком слабое, чтобы её можно было обнаружить при помощи астрономических инструментов того времени. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирантка Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта — своеобразный «космический радиомаяк». Но любая обычная звезда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Производство

Колонии строгого режима

Интересное об Игоре Сикорском.

— Своей любовью к авиаконструированию Игорь Сикорский обязан матери, Марии Стефановне, ведь именно она привила сыну любовь к музыке, литературе и искусству. Это от нее впервые услышал он о проектах летательных аппаратов великого Леонардо да Винчи. Любимой книгой стал роман Жюля Верна «Робур-завоеватель», где рассказывалось о гигантском воздушном корабле — прообразе вертолета. Полет на воздушном корабле однажды приснился ему и стал мечтой всей жизни;

— свой первый вертолет с двигателем на резинке выдающийся авиаконструктор соорудил еще в 12 лет. Тогда ее никто не воспринял всерьез, а сегодня по схеме Сикорского производится 99 процентов всех вертолетов в мире;

—  по свидетельству людей, которые близко знали конструктора, Игорь Сикорский был исключительно миролюбивым человеком. Главной миссией авиации Сикорский считал облегчение жизни и деятельности людей;

— Сергей Сикорский, сын легендарного инженера, навсегда запомнил слова своего отца о том, каким он видит Киев. «Киев — мать городов русских», — говорил хорошо известные всем слова Игорь Сикорский, вспоминая о Киеве, в который после эмиграции ему так и не удалось вернуться;

На фото: Одна из машин, сконструированных Игорем Сикорским, — аэросани (во дворе дома номер 15 на Ярославовом Валу. 1910 год).

— вот что Сергей Сикорский вспоминал об отце в одном из своих интервью: «Папа умер в возрасте 83 лет, но, что удивительно, я его никогда не воспринимал как старого человека. Он был замечательным отцом и очень разносторонней личностью: философом, инженером, первоклассным летчиком. Его интересовало многое: литература, классическая музыка, история, астрономия, богословие… Да и сама жизнь была очень интересной, насыщенной. Создав машины, которые смогли летать, отец сумел воплотить то, что казалось в его время неосуществимым, фантазией и фантастикой одновременно».

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.

Когда рентгеновские пульсары отбирают материал у более массивных соседей, то он контактирует с магнитным полем и создает мощные лучи, наблюдаемые в радио, рентгеновском, гамма и оптическом спектре. Так как источник располагается в компаньоне, то их именуют пульсарами с аккрецией.

Строение магнитного поля нейтронной звезды

Вращающиеся пульсары в небе подчиняются вращению звезд, потому что высокоэнергетические электроны взаимодействуют с магнитным полем пульсара над полюсами. Так как вещество внутри магнитосферы пульсара ускоряется, это заставляет его вырабатывать гамма-лучи. Отдача энергии замедляет вращение.

Магнитные поля магнетар в 1000 раз сильнее, чем у нейтронных звезд. Из-за чего заставляют вращаться звезду намного дольше.

Ссылки

Обязанности военнослужащих в строю =

Черная вдова

Взрыв сверхновой звезды достаточно часто сообщает новорожденному пульсару немалую скорость. Такая летящая звезда с приличным собственным магнитным полем сильно возмущает ионизированный газ, заполняющий межзвездное пространство. Образуется своеобразная ударная волна, бегущая впереди звезды и расходящаяся широким конусом после нее. Совмещенное оптическое (сине-зеленая часть) и рентгеновское (оттенки красного) изображение показывает, что здесь мы имеем дело не просто со светящимся газовым облаком, а с огромным потоком элементарных частиц, испускаемых данным миллисекундным пульсаром. Линейная скорость Черной Вдовы равна 1 млн. км/ч, оборот вокруг оси она делает за 1,6 мс, лет ей уже около миллиарда, и у нее есть звезда-компаньон, кружащаяся около Вдовы с периодом 9,2 часа.

Свое название пульсар В1957+20 получил по той простой причине, что его мощнейшее излучение просто сжигает соседа, заставляя «кипеть» и испаряться образующий его газ. Красный сигарообразный кокон позади пульсара — это та часть пространства, где испускаемые нейтронной звездой электроны и протоны излучают мягкие гамма-кванты.

Результат компьютерного моделирования позволяет очень наглядно, в разрезе, представить процессы, происходящие вблизи быстро летящего пульсара. Расходящиеся от яркой точки лучи — это условное изображение того потока лучистой энергии, а также потока частиц и античастиц, который исходит от нейтронной звезды. Красная обводка на границе черного пространства вокруг нейтронной звезды и рыжих светящихся клубов плазмы — это то место, где поток релятивистских, летящих почти со скоростью света, частиц встречается с уплотненным ударной волной межзвездным газом. Резко тормозя, частицы испускают рентгеновское излучение и, потеряв основную энергию, уже не так сильно разогревают налетающий газ.

Навигация

Тюрьма Монтелюпих (Польша)

Что такое пульсар?

В центре галактики М82 можно увидеть пульсар (розовый)

Если высматривать на небе пульсар, то кажется обычной мерцающей звездой, следующей по определенному ритму. На самом деле, их свет не мерцает и не пульсирует, и они не выступают звездами.

Пульсар вырабатывает два стойких узких световых луча в противоположных направлениях. Эффект мерцания создается из-за того, что они вращаются (принцип маяка). В этот момент луч попадает на Землю, а затем снова поворачивается. Почему это происходит? Дело в том, что световой луч пульсара обычно не совмещается с его осью вращения.

Строение пульсара

Если мигание создается вращением, то скорость импульсов отображает ту, с которой вращается пульсар. Всего было найдено 2000 пульсаров, большая часть их которых делает один оборот в секунду. Но есть примерно 200 объектов, умудряющихся за то же время совершать по сотне оборотов. Наиболее быстрые называют миллисекундными, потому что их количество оборотов за секунду приравнивается к 700.

Пульсары нельзя считать звездами, по крайней мере «живыми». Это скорее нейтронные звезды, формирующиеся после того, как у массивной звезды заканчивается топливо, и она разрушается. В результате создается сильный взрыв – сверхновая, а оставшийся плотный материал трансформируется в нейтронную звезду.

Число найденных пульсаров

Диаметр пульсаров во Вселенной достигает 20-24 км, а по массе вдвое больше солнечной. Чтобы вы понимали, кусочек такого объекта размером с сахарный куб будет весить 1 миллиард тонн. То есть, у вас в руке помещается нечто весом с Эверест! Правда есть еще более плотный объект – черная дыра. Наиболее массивная достигает 2.04 солнечной массы.

Пульсары обладают сильным магнитным полем, которое от 100 миллионов до 1 квадриллиона раз сильнее земного. Чтобы нейтронная звезда начала излучать свет подобный пульсару, она должна обладать правильным соотношением напряженности магнитного поля и частоты вращения. Случается так, что луч радиоволн может не пройти через поле зрения наземного телескопа и остаться невидимым.

Человек и вертолёт. Как русский технический гений покорил Америку

Остывание нейтронных звёзд

В момент рождения нейтронной звезды в результате вспышки сверхновой её температура очень высока — порядка 1011 K (то есть на 4 порядка выше температуры в центре Солнца), но она очень быстро падает за счёт нейтринного охлаждения. Всего за несколько минут температура падает с 1011 до 109 K, за месяц — до 108 K. Затем нейтринная светимость резко снижается (она очень сильно зависит от температуры), и охлаждение происходит гораздо медленнее за счёт фотонного (теплового) излучения поверхности. Температура поверхности известных нейтронных звёзд, у которых её удалось измерить, составляет порядка 105—106 K (хотя ядро, видимо, гораздо горячее).

Остывание нейтронных звёзд

В момент рождения нейтронной звезды (в результате вспышки сверхновой), её температура очень высока — порядка 1011 K (то есть на 4 порядка выше температуры в центре Солнца), но она очень быстро падает за счёт нейтринного охлаждения. Всего за несколько минут температура падает с 1011 до 109 K, за сто лет — до 108 K. Затем нейтринная светимость резко снижается (она очень сильно зависит от температуры), и охлаждение происходит гораздо медленнее за счёт фотонного (теплового) излучения поверхности. Температура поверхности известных нейтронных звёзд, у которых её удалось измерить, составляет порядка 105—106 K (хотя ядро, видимо, гораздо горячее).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector