Электромагнитное импульсное оружие. принцип действия и устройство

Содержание:

Электромагнитный импульс

Зарево, возникшее в результате высотного ядерного взрыва Starfish Prime

При ядерном взрыве в результате сильных токов в ионизированном радиацией и световым излучением в воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого, большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.

Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км (см., например, эксперимент по высотному подрыву ядерного заряда Starfish Prime).

Возникновение ЭМИ происходит следующим образом:

  1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.
  2. Гамма-кванты рассеиваются на свободных электронах, что приводит к появлению быстро изменяющегося токового импульса в проводниках.
  3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

Под воздействием ЭМИ во всех неэкранированных протяжённых проводниках индуцируется напряжение, и чем длиннее проводник, тем выше напряжение. Это приводит к пробоям изоляции и выходу из строя электроприборов связанных с кабельными сетями, например, трансформаторные подстанции и т. д.

Большое значение ЭМИ имеет при высотном взрыве от 100 км и более. При взрыве в приземном слое атмосферы не оказывает решающего поражения малочувствительной электротехники, его радиус действия перекрывается другими поражающими факторами. Но зато оно может нарушить работу и вывести из строя чувствительную электроаппаратуру и радиотехнику на значительных расстояниях — вплоть до нескольких десятков километров от эпицентра мощного взрыва, где прочие факторы уже не приносят разрушающий эффект. Может вывести из строя незащищённую аппаратуру в прочных сооружениях, рассчитанных на большие нагрузки от ядерного взрыва (например ШПУ). На людей поражающего действия не оказывает.

Страны-эксплуатанты[править]

Доказательства действия

Эффективность ИЭМП-терапии подвергается сомнению многими людьми. В то же время, однако, существуют и признанные научные исследования, и опубликованные на их основе работы, которые демонстрируют реальное воздействие на организм человека. Эффективность применения ИЭМП может быть подтверждена только с помощью комплексного метода исследований – микроскопии красных кровяных телец в периоды до и после ИЭМП-терапии, тепловизионной диагностики (теплочувствительные камеры измеряют разницу в температуре кожного покрова, возрастающей из-за повышения интенсивности кровоснабжения), каких-либо иных измерительных лабораторных опытов.

История создания

Навигация

Наземные испытания

Первые бомбы испытывались прямо на поверхности земли. Именно такие типы взрывов сопровождаются четко выраженным грибовидным облаком в воздухе и кратером, простирающимся на несколько десятков, а то и сотен метров в почве. Наземный взрыв выглядит наиболее устрашающее, так как облако, низко зависшее над землей, притягивает в себя не только пыль, но и существенную часть грунта, что делает его практически черным. Частицы грунта перемешиваются с химическими элементами, а затем выпадают на землю, что делает территорию радиоактивно зараженной и совершенно непригодной для жизни. В военных целях это может использоваться для уничтожения мощных строений или объектов, заражения обширных территорий. Разрушительный эффект при этом наиболее мощный.

Искусственные источники и их эффекты

Коммутируемые индукторы

Сильные магнитные импульсы могут генерироваться сильноточными импульсами в катушках. Они используются для исследования влияния сильных магнитных полей на вещество или, например, для преобразования магнита . Такие катушки могут выдерживать поля до 100  тесла , но они разрушаются при более высоких полях. Для механической защиты и магнитного экранирования соответствующие лаборатории размещаются в массивных железобетонных зданиях. Импульсы тока, генерируемые разрядом конденсатора, достигают нескольких 100 килоампер и длятся миллисекунды.

Аналогичные условия существуют в рельсотронах и вихретоковых ускорителях .

Импульсные трансформаторы Тесла генерируют сильные электромагнитные поля в средневолновом диапазоне .

Отключение индуктивностей также приводит к возникновению электромагнитных импульсов. Попытка электрического тока продолжать протекать через индуктивность во время процесса выключения создает очень высокое напряжение на катушке, что может привести к искрообразованию. Импульсы помех распространяются по линиям, вызывают помехи сигналов и при определенных обстоятельствах имеют эффекты, подобные электростатическим разрядам. Такие импульсы возникают, например, при отключении электродвигателей , контакторов и других индуктивных компонентов. Частым источником помех такого рода является система зажигания двигателей Отто, в которой эффект повышения напряжения используется как искровой индуктор .

Следует также упомянуть генератор сжатия потока , который вместе с Виркатором ЭМИ генерирует двузначный гигаваттный диапазон во временном диапазоне 0,1 … 1 мкс.

Лазерное излучение

Сильные запускают ЭМИ, когда они взаимодействуют с веществом. Поэтому лаборатории для исследовательских целей с мощностью лазерного излучения до петаваттного диапазона имеют радиационную защиту и соответствующие дополнительные меры для защиты сетей связи.

Как смастерить рукоятку?

Защита от ЭМИ оружия

Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.

Меры применяются трех категорий:

  1. блокирование входа части энергии электромагнитного импульса
  2. подавление индукционных токов внутри электрических схем быстрым их размыканием
  3. использование электронных устройств нечувствительных к ЭМИ

Средства сброса части или всех энергии ЭМИ на входе в устройство

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

Кроме этого может быть использован разрядник, как средство сброса энергии сразу за антенной.

Средства размыкания цепей при возникновении сильных индукционных токов

Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ используют

  • стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
  • варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.

Электронные устройства, нечувствительные к ЭМИ

Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:

  • Использование оптического кабеля для передачи сигнала.
  • Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000 °С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

Подземные испытания

В последнее время между странами существует договор, регламентирующий ядерные испытания и предписывающий проводить их только под землей, что позволяет минимизировать загрязнения и непригодные для жизни площади, образующиеся вокруг полигонов.

Испытания под землей считаются наименее опасными, так как действие всех поражающих факторов приходится на породы. Увидеть светящиеся вспышки или грибовидное облако при этом невозможно, от него остается только столб пыли. Но ударная волна приводит к землетрясению и обрушению грунта. Обычно это используется в мирных целях, для решения народохозяйственных задач. Например, так можно разрушать горные массивы или образовывать искусственные водоемы.

«Золотые боеприпасы»

Почти все статьи, повествующие об электромагнитном оружии, по традиции заканчиваются стандартной «страшилкой» об «отключившихся телефонах» и «погасшем свете». Мы же не будем этого делать, и по вполне очевидной причине: идиота, расходующего умопомрачительно дорогие боеприпасы на такую ерунду, скорее всего, будет ждать военный трибунал.

Один из самых малогабаритных образцов ядерного оружия — 152-мм артиллерийский снаряд (параметры деления оружейного плутония таковы, что в меньших размерах создать взрывную сверхкритическую сборку невозможно). Хотя ударно-волновой заряд удалось «втиснуть» в меньший (105 мм) калибр, в технологии производства таких «малышей» много общего, и стоимость их вполне сравнима. Поэтому применение ударно-волнового боеприпаса целесообразно лишь в очень ответственных ситуациях, например для «ослепления» электроники опаснейшего противника — подлетающей крылатой ракеты. Для «прозы войны» — действий на поле боя — требуются другие типы электромагнитных боеприпасов, «числом поболее, ценою подешевле». Но об этом — в следующих номерах.

Статья опубликована в журнале «Популярная механика» (№3, Март 2005).

Эффекты [ править ]

Незначительные события ЭМИ, особенно последовательности импульсов, вызывают низкий уровень электрического шума или помех, которые могут повлиять на работу чувствительных устройств. Например, распространенной проблемой в середине двадцатого века были помехи, исходящие от систем зажигания бензиновых двигателей, которые вызывали треск радиоприемников, а на телевизорах — полосы на экране. Были приняты законы, обязывающие производителей автомобилей устанавливать глушители помех.

На высоком уровне напряжения ЭМИ может вызвать искру, например, от электростатического разряда при заправке автомобиля с бензиновым двигателем

Известно, что такие искры вызывают взрывы топлива и воздуха, и для их предотвращения необходимо принимать меры предосторожности

Большой и энергичный ЭМИ может вызвать высокие токи и напряжения в блоке-жертве, временно нарушив его работу или даже необратимо повредив.

Мощный ЭМИ может также напрямую воздействовать на магнитные материалы и повредить данные, хранящиеся на таких носителях, как магнитная лента и жесткие диски компьютеров . Жесткие диски обычно закрываются корпусами из тяжелого металла. Некоторые поставщики услуг по утилизации ИТ-активов и переработчики компьютеров используют управляемый EMP для очистки таких магнитных носителей.

Очень сильное ЭМИ-событие, такое как удар молнии, также способно повредить такие объекты, как деревья, здания и самолеты, напрямую либо из-за тепловых эффектов, либо из-за разрушающего воздействия очень большого магнитного поля, создаваемого током. Косвенным воздействием может быть электрический пожар, вызванный нагревом. Для большинства инженерных конструкций и систем требуется определенная форма защиты от молнии.

Пушки и снаряды

Пожалуй, первыми электромагнитными боеприпасами были и остаются обычные ядерные заряды, одним из поражающих факторов которых является электромагнитный импульс, выводящий из строя электронику на много километров вокруг. Действие электромагнитного излучения оказалось настолько эффективным, что сразу возник вопрос — нельзя ли создать «чистое», неядерное электромагнитное оружие?

Первой приходит мысль о направленном излучении, которое распространяется примерно в 40 тысяч раз быстрее, чем летит боеголовка баллистической ракеты. Такой пушке не потребуются снаряды, у нее не будет отдачи, стрельба ее беззвучна и бездымна.

Несложные расчеты показывают: дальность поражения электроники не может превышать размер источника излучения более чем в 1000 раз, иначе излучение вызовет разряд в окружающем воздухе и вся его энергия уйдет на образование плазменного экрана. Из этого следует, что источники узких пучков электромагнитного излучения — микроволновые пушки — всегда будут проигрывать равным по габаритам артсистемам в дальности и эффективности поражения. Пучок излучения не заставишь искривиться, поэтому нельзя стрелять с закрытых позиций.

Оружие В России создали оружие против стай дронов

Если к этому добавить немалые габариты микроволновых пушек, то понятно, что шансов на современном поле боя у них нет. Список недостатков можно продолжить. Но это не значит, что у электромагнитного оружия нет будущего.

Другое дело, если источник ЭМИ срабатывает рядом с целью — тогда преимущество перед ударной волной или осколками очевидно. Например, радиус поражения крылатой ракеты 120-мм электромагнитным боеприпасом может составить 60 метров (та же тысяча радиусов боеприпаса), что в десять раз дальше, чем осколочно-фугасным снарядом аналогичного калибра.

Однако на данный момент в мире не существует компактных хранилищ электромагнитной энергии высокой плотности, которые можно было бы разместить внутри современных боеприпасов. Поэтому для ее генерации используется традиционное взрывчатое вещество, при детонации которого выделяется в тысячи раз больше энергии, чем может выдать в нагрузку лучший аккумулятор того же объема. Называются такие генераторы взрывомагнитными, и своим рождением они обязаны опять же ядерному оружию.

Действие высоковольтного излучения на людей и окружающую среду

Линии электропередач напряжением выше 100 кВ – это самые мощные источники электромагнитного излучения. Исследования радиационного воздействия на технический персонал стартовали с началом строительства первых 220-кВ ЛЭП, когда появились случаи ухудшения здоровья рабочих. Ввод в эксплуатацию линий электропередач напряжением 400 кВ привел к публикации многочисленных работ в этой области, которые впоследствии стали основой для принятия первых нормативных актов, ограничивающих действие 50-Гц электрического поля.

ЛЭП с напряжением более 500 кВ оказывают воздействие на окружающую среду в виде:

  • электрического поля частотой 50 Гц;
  • излучения коронного разряда;
  • магнитного поля промышленной частоты.

Пороховое оружие

Достоинства:

Мощность и простота в обращении.

Недостатки:

Ограничение в использовании.

ППО под капсюль «жевело»

Отличный подводный пистолет – прост, компактен и надежен. Гарпун вставляется в ствол, отводится затвор в магазин, рассчитанный на 4 капсюля. Вставляются заряды, закрывается затвор, взводится курок и ружье готово к стрельбе.

Питолет ППО

Достоинства:

Мощность и дальность вне конкуренции

Недостатки:

Запрет использования в спортивной и любительской рыбалке.

Виды и типы

Этот быстрый процесс преобразования любого взрывчатого вещества, с выделением определенного количества энергии за небольшой промежуток времени, имеет следующую классификацию:

  • физический взрыв – вызываемый изменением физического состояния вещества. В результате такого В. вещество превращается в газ с высоким давлением и температурой;
  • химический взрыв – вызываемый быстрым химическим превращением веществ, при котором потенциальная химическая энергия переходит в тепловую и кинетическую энергию расширяющихся продуктов взрыва. В основе лежат взрывчатые вещества, процесс происходит с выделением энергии химических исходных веществ;
  • ядерный взрыв – мощный взрыв, вызванный высвобождением ядерной энергии либо быстро развивающейся цепной реакцией деления тяжелых ядер, либо термоядерной реакцией синтеза ядер гелия из более легких ядер;
  • аварийный взрыв – произошедший в результате нарушения технологии производства, ошибок обслуживающего персонала либо ошибок, допущенных при проектировании;
  • взрыв пылевоздушной смеси – когда первоначальный инициирующий импульс способствует возмущению пыли или газа, что приводит к последующему мощному взрыву;
  • взрыв сосуда под высоким давлением – взрыв сосуда, в котором в рабочем состоянии хранятся сжатые под высоким давлением газы или жидкости, либо взрыв, в котором давление возрастает в результате внешнего нагрева или самовоспламенения образовавшейся смеси внутри сосуда;
  • объемный взрыв – детонационный или дефлаграционный взрыв газовоздушных, пылевоздушных и пылегазовых облаков.
  • природные – при грозе, извержении вулкана, падение небесных тел (метеоритов).

Все типы взрывов приводят к образованию ударного, вибрационного и теплого воздействия на все окружение. Масштаб разрушений зависит от места возникновения процесса детонации и его мощности. Рассмотрим поражающее действие и последствия взрывов.

Защита от ЭМИ оружия

Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.

Меры применяются трех категорий:

  1. блокирование входа части энергии электромагнитного импульса
  2. подавление индукционных токов внутри электрических схем быстрым их размыканием
  3. использование электронных устройств нечувствительных к ЭМИ

Средства сброса части или всех энергии ЭМИ на входе в устройство

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

Кроме этого может быть использован разрядник, как средство сброса энергии сразу за антенной.

Средства размыкания цепей при возникновении сильных индукционных токов

Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от от ЭМИ используют

  • стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
  • варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.

Электронные устройства, нечувствительные к ЭМИ

Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:

  • Использование оптического кабеля с передачей сигналом лазером как можно скорее по схеме электроники от части устройств, потенциально подверженных ЭМИ.
  • Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

Принцип действия

Для воздушного ядерного взрыва нужно создать определенные условия, провоцирующие детонацию. Обычно в качестве детонаторов используются тротил или гексоген, под воздействием которых радиоактивное вещество (обычно уран или плутоний) в течение 10 секунд сжимается до критической массы, а затем происходит мощный выброс энергии. Если бомба термоядерная, то в ней происходит процесс превращения легких элементов в более тяжелые. Выделяемая при этом энергия несет за собой еще более мощный взрыв.

Ядерный реактор может использоваться и в мирных целях, так как делением можно управлять. Для этого применяются устройства, поглощающие нейтроны. Процессы, протекающие в такой установке, все время находятся в равновесии. Даже если происходят какие-либо незначительные изменения в параметрах, система вовремя гасит их и возвращается в рабочий режим. В аварийных ситуациях автоматически сбрасываются элементы, останавливающие цепную реакцию.

Радиоактивное заражение

Кратер от взрыва 104-килотонного заряда. Выбросы грунта также служат источником заражения

Радиоактивное заражение — результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва — продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведенная радиоактивность).

Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной, в зависимости от окружающих условий, например скорости и направления ветра.

Радиоактивные продукты взрыва испускают три вида излучения: альфа, бета и гамма. Время их воздействия на окружающую среду весьма продолжительно.

В связи с естественным процессом распада радиоактивность уменьшается, особенно резко это происходит в первые часы после взрыва.

Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.

Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60Co (гипотетическая грязная бомба).

Поражение ЭМИ-оружием ракет и высокоточных боеприпасов

Принцип действия ЭМИ-гранаты

К ЭМИ-оружию уязвимы ракеты с конструктивными элементами следующего вида:

  • противорадиолокационные ракеты с собственными радарами поиска РЛС;
  • ПТРК 2-го поколения с управлением по не экранированному проводу (TOW или Фагот);
  • ракеты с собственными активными радарами поиска бронетехники (Brimstone, JAGM, AGM-114L Longbow Hellfire);
  • ракеты с управлением по радиоканалу (TOW Aero, Хризантема);
  • высокоточные бомбы с простыми приёмниками GPS-навигации;
  • планирущие боеприпасы с собственными радарами (SADARM).

Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.

Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.

защита

Защита от ЭМИ также известна как усиление ЭМИ. В частности, пространственно протяженные электрические проводники, такие как сети энергоснабжения и медные телекоммуникационные сети, подвергаются риску воздействия LEMP или NEMP. NEMP также подвергает опасности металлические трубопроводы. Хотя сети энергоснабжения практически невозможно защитить, изолирующие передатчики или усилители могут быть встроены в линии связи или их можно заменить волоконно-оптическими сетями .

Трубопроводы могут быть местами или целиком выполнены из изоляционных материалов для защиты. Системы могут быть защищены клеткой Фарадея и защитными цепями ( гальваническая развязка , разрядник ) на всех линиях электропитания. Однако в случае радиосистем экранирование может быть достигнуто лишь частично, поскольку их антенны не должны быть экранированы, чтобы они могли проводить электромагнитные поля к детектору, что является их основной задачей.

Из-за открытого положения во время полета летательные аппараты подвергаются воздействию более сильных электромагнитных импульсов в определенных ситуациях, например, в непосредственной близости от мощных радиолокационных систем, даже в обычных и гражданских целях. Необходимые для мер и ограничений защиты термин HIRF для английского High Intensity Radiated Fields обобщен.

Световое излучение

Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна

Образование головной ударной волны (эффект Маха) при взрыве 20 кт

Разрушения в Хиросиме в результате атомной бомбардировки

Жертва ядерной бомбардировки Хиросимы

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

Световое излучение

Основная статья: Световое излучение (поражающий фактор)

Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна

Образование головной ударной волны (эффект Маха) при взрыве 20 кт

Разрушения в Хиросиме в результате атомной бомбардировки

Жертва ядерной бомбардировки Хиросимы

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

Заключение

География эксплуатации Ан-74 весьма обширна. Эти самолеты, помимо России и Украины, летают в Египте, Иране, Казахстане, Лаосе, Судане, Туркмении. По данным на 2006 года стоимость одной такой машины находилась в пределах 17-20 миллионов долларов. Всего же за все время была выпущена 81 единица. Самолет настолько хорошо зарекомендовал себя на практике, что до сих пор не снят с производства.

За свой уникальный внешний вид Ан-74 получил в народе название «Чебурашка», что связано с расположенными над крыльями двигателями. Из недостатков машины пассажиры и экипаж отмечают довольно значительный шум во время полета, однако с учетом высокой степени безопасности этот отрицательный фактор не играет решающей роли.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector