Гиперзвуковая скорость

Содержание:

Содержание

Конструкция

Снимок наблюдателей ОБСЕ МТ-12 украинских войск. Февраль 2015 года.

Конструктивно орудие представляет собой гладкоствольное противотанковое орудие на классическом двухстанинном лафете.

Прицельные приспособления

На МТ-12 устанавливаются следующие артиллерийские прицелы:

  • Для стрельбы прямой наводкой в дневное время (по видимой цели) — оптический прицел ОП4МУ-40У, который снимается с пушки только перед длительными и тяжёлыми по проходимости маршами или при её длительном хранении;
  • Для стрельбы с закрытых позиций (по невидимой цели) — механический прицел С71-40 с панорамой ПГ-1М и коллиматором К-1;
  • Для ночной стрельбы — 1ПН35, ночной прицел АПН-6-40 «Брусника»; либо 1ПН53, ночной прицел АПН-7;

Панорама ПГ-1М является оптическим прибором, который необходим для точной наводки орудия в цель в горизонтальных и вертикальных плоскостях.

Коллиматор К-1 представляет собой оптический прибор, предназначенный для горизонтальной наводки пушки при отсутствии естественных точек наводки или в условиях плохой их видимости (в тумане, при снегопаде, задымлении огневой позиции).

Для освещения прицельных приспособлений пушки в ночное время также используется прибор освещения Луч-С71М.

Транспортировка

Так как в МТ-12 используются колёса от грузового автомобиля ЗИС-150 с шиной «ГК» (губчатый каучук — размер 9,0-20, модель Я-37), то транспортировка осуществлялась буксировкой гусеничным тягачом МТ-Л(МТ-ЛБ), автомобилями-тягачами Урал-375Д и Урал-4320. При движении по снегу использовалась лыжная установка ЛО-12.

Параметры подобия

Параметры газовых потоков принято описывать набором критериев подобия, которые позволяют свести практически бесконечное число физических состояний в группы подобия и которые позволяют сравнивать газовые потоки с разными физическими параметрами (давление, температура, скорость и пр.) между собой. Именно на этом принципе основано проведение экспериментов в аэродинамических трубах и перенос результатов этих экспериментов на реальные летательные аппараты, несмотря на то, что в трубных экспериментах размер моделей, скорости потока, тепловые нагрузки и пр. могут сильно отличаться от режимов реального полёта, в то же время, параметры подобия (числа Маха, Рейнольдса, Стантона и пр.) соответствуют полётным.

Для транс- и сверхзвукового или сжимаемого потока, в большинстве случаев таких параметров как число Маха (отношение скорости потока к местной скорости звука) и Рейнольдса достаточно для полного описания потоков. Для гиперзвукового потока данных параметров часто бывает недостаточно. Во-первых, описывающие форму ударной волны уравнения становятся практически независимыми на скоростях от 10 М. Во-вторых, увеличенная температура гиперзвукового потока означает, что эффекты, относящиеся к неидеальным газам становятся заметными.

Учет эффектов в реальном газе означает бо́льшее количество переменных, которые требуются для полного описания состояния газа. Если стационарный газ полностью описывается тремя величинами: давлением, температурой, теплоёмкостью (адиабатическим индексом), а движущийся газ описывается четырьмя переменными, которая включает еще скорость, то горячий газ в химическом равновесии также требует уравнений состояния для составляющих его химических компонентов, а газ с процессами диссоциации и ионизации должен еще включать в себя время как одну из переменных своего состояния. В целом это означает, что в любое выбранное время для неравновесного потока требуется от 10 до 100 переменных для описания состояния газа. Вдобавок, разреженный гиперзвуковой поток (ГП), обычно описываемый в терминах чисел Кнудсена, не подчиняются уравнениям Навье-Стокса и требуют их модификации. ГП обычно категоризируется (или классифицируется) с использованием общей энергии, выраженной с использованием общей энтальпии (мДж/кг), полного давления (кПа) и температуры торможения потока (К) или скорости (км/с).

Для инженерных приложений У. Д. Хэйес развил параметр подобия, близкий к правилу площадей Виткомба, который позволяет инженерам применять результаты одной серии испытаний или расчетов, выполненных для одной модели, к разработке целого семейства подобных конфигураций моделей, при этом не проводя дополнительных испытаний или подробных расчетов.

Гонки на выживание

Словосочетание «гиперзвуковое оружие» порождает неудобные вопросы. Что считать таковым? Существуют ли гиперзвуковые комплексы в наше время? И могут ли они быть эффективнее обычного оружия? Вообще, к условному гиперзвуковому оружию можно отнести даже боевое оснащение межконтинентальных баллистических ракет (МБР) и баллистических ракет подводных лодок (БРПЛ), так как на некоторых участках полета их боеголовки способны развивать гиперзвуковую скорость, которой, как известно, считают скорость выше пяти Махов. В то же время при вхождении в тропосферу боеголовка сильно замедляется, а гиперзвуковая скорость снижается до обычной сверхзвуковой.

Иначе устроено то, что сейчас принято называть гиперзвуковым оружием. Такой боеприпас должен уметь развивать гиперзвуковую скорость и маневрировать с использованием аэродинамических сил, поддерживая гиперзвук вплоть до момента поражения цели. Среди связанных с разработкой такого оружия проблем – обеспечение управляемого полета при гиперзвуковой скорости, когда у поверхности аппарата образуется плазма, в буквальном смысле окутывающая его. При этом происходит нагревание газа до температур нескольких тысяч градусов, что делает наведение ракеты на цель крайне трудной задачей: не каждая электроника способна справиться с такими нагрузками.

Гиперзвуковая крылатая ракета Boeing X-51

Источник изображения: wikipedia

Характерный пример – знаменитая американская гиперзвуковая экспериментальная ракета Boeing X-51, которая неоднократно сталкивалась с неудачами во время испытаний. Это, например, произошло в 2011 и 2012 годах. Не стоит также исключать, что американцы скрыли часть неудачных тестов, и проблемы еще серьезнее, чем может показаться.

Однако и недооценивать США не стоит. Особенно если учесть, что, кроме опыта разработки такого оружия, они имеют самый большой в мире военный бюджет: по состоянию на 2018 год, он превышал 640 миллиардов долларов. Или, если говорить проще, был в разы больше аналогичного показателя КНР, а российского военного бюджета – примерно в десять раз, если не больше.

На кону стоит многое. Страна, получившая в распоряжение гиперзвуковое оружие, сможет не только доставить к противнику «подарки» за крайне короткий промежуток времени, но и сделает их перехват задачей практически непосильной для многих противовоздушных средств. Особенно если речь идет о массированной атаке.

Х-47М2 «Кинжал»

Источник изображения: bastion-karpenko.ru

Поэтому многие рассматривают высокоточное неядерное оружие в качестве альтернативы ядерной триаде, доставшейся еще со времен холодной войны. И правда, зачем применять разрушительные боеголовки, когда парализовать противника можно с помощью гиперзвукового «скальпеля»? К слову, Россия очень хотела бы быть лидером в разработке гиперзвукового оружия, однако пока, видимо, пытается выдать желаемое за действительное. Так, ракета воздушного базирования Х-47М2 «Кинжал» хоть и способна развивать гиперзвуковую скорость, едва ли может поддерживать ее на протяжении всей траектории. Она не имеет прямоточного воздушно-реактивного двигателя, как X-51, и является аналогом не американской разработки, а аэробаллистических ракет времен холодной войны – типа снятой с вооружения советской Х-15.

Более интересным образцом выглядит российский «Циркон», предназначенный для флота. Однако пока этой ракеты нет на вооружении, а единственное свидетельство ее материального существования – показанные в 2019 году транспортно-пусковые контейнеры, расположенные на борту новейшего фрегата «Адмирал Горшков». По мнению экспертов, они похожи на те, которые, предположительно, должны использовать для гиперзвуковых «Цирконов».

  • Гиперзвуковая ракета «Циркон» / Циркон
  • Фрегат «Адмирал Горшков» / topwar.ru

А теперь перейдем непосредственно к американским разработкам, ведь именно они могут определить развитие высокоточного оружия на много десятилетий вперед.

Имперские легионы

Общие сведения

Полёт на гиперзвуковой скорости является частью сверхзвукового режима полёта и осуществляется в сверхзвуковом потоке газа. Сверхзвуковой поток воздуха коренным образом отличается от дозвукового и динамика полёта самолёта при скоростях выше скорости звука (выше 1,2 М) кардинально отличается от дозвукового полёта (до 0,75 М, диапазон скоростей от 0,75 до 1,2 М называется трансзвуковой скоростью).

Определение нижней границы гиперзвуковой скорости обычно связано с началом процессов диссоциации и ионизации молекул в пограничном слое (ПС) около аппарата, который движется в атмосфере, что начинает происходить примерно при М > 5. Также данная скорость характеризуется тем, что сверхзвуковой прямоточный воздушно-реактивный двигатель с дозвуковым сгоранием топлива () становится менее эффективным по сравнению с гиперзвуковым ПВРД (ГПВРД), в котором сгорание топлива осуществляется при сверхзвуковых скоростях потока. СПВРД по сравнению с ГПВРД при той же скорости полёта требует более сильного торможения потока воздуха перед его попаданием в камеру сгорания. Это обусловливает бо́льшие потери давления на участке торможения потока в СПВРД. В то же время в ГПВРД сгорание топлива при сверхзвуковой скорости потока сопровождается бо́льшими потерями давления по сравнению с потерями при сгорании топлива в дозвуковом потоке в СПВРД. При прочих равных условиях, чем ниже суммарные потери давления в проточном тракте ПВРД, тем выше его эффективность. Условия полёта, при которых суммарные потери в проточных трактах СПВРД и ГПВРД оказываются одинаковыми, принимаются за границу между сверхзвуковыми и гиперзвуковыми скоростями. Положение данной границы весьма условно и зависит от многих факторов. Так, например, для двигателей, использующих в качестве топлива водород, ввиду бо́льшей удельной теплоты его сгорания нижняя граница гиперзвуковых скоростей будет соответствовать более высоким числам Маха полёта, чем для аналогичных двигателей, работающих на керосине.

Как происходит эволюция звезд на последнем этапе

Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.

Планетарная туманность Глаз Бога

Жизнь светил с высокой массой

Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.

По данным учёных, во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы. Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.

Эволюция звёзд

Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.

Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.

В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.

Общие сведения

Полет на гиперзвуковой скорости является разновидностью сверхзвукового режима полета и осуществляется в сверхзвуковом потоке газа. Сверхзвуковой поток воздуха коренным образом отличается от дозвукового, и динамика полета самолета при скоростях выше скорости звука (выше 1,2 М) кардинально отличается от дозвукового полета (до 0,75 М, диапазон скоростей от 0,75 до 1,2 М называется трансзвуковой скоростью).

Определение нижней границы гиперзвуковой скорости обычно связано с началом процессов ионизации и диссоциации молекул в пограничном слое (ПС) около аппарата, который движется в атмосфере, что начинает происходить примерно при М>5. Также данная скорость характеризуется тем, что сверхзвуковой прямоточный воздушно-реактивный двигатель с дозвуковым сгоранием топлива () становится менее эффективным по сравнению с гиперзвуковым ПВРД (ГПВРД), в котором сгорание топлива осуществляется при сверхзвуковых скоростях потока. СПВРД по сравнению с ГПВРД при той же скорости полета требует более сильного торможения потока воздуха перед его попаданием в камеру сгорания. Это обуславливает бо́льшие потери давления на участке торможения потока в СПВРД. В то же время в ГПВРД сгорание топлива при сверхзвуковой скорости потока сопровождается бо́льшими потерями давления по сравнению с потерями при сгорании топлива в дозвуковом потоке в СПВРД. При прочих равных условиях, чем ниже суммарные потери давления в проточном тракте ПВРД, тем выше его эффективность. Условия полета, при которых суммарные потери в проточных трактах СПВРД и ГПВРД оказываются одинаковыми, принимаются за границу между сверхзвуковыми и гиперзвуковыми скоростями. Положение данной границы весьма условно и зависит от многих факторов. Так, например, для двигателей, использующих в качестве топлива водород, ввиду бо́льшей удельной теплоты его сгорания нижняя граница гиперзвуковых скоростей будет соответствовать более высоким числам Маха полета, нежели чем для аналогичных двигателей, работающих на керосине.

Параметры подобия

Параметры газовых потоков принято описывать набором критериев подобия, которые позволяют свести практически бесконечное число физических состояний в группы подобия и которые позволяют сравнивать газовые потоки с разными физическими параметрами (давление, температура, скорость и пр.) между собой. Именно на этом принципе основано проведение экспериментов в аэродинамических трубах и перенос результатов этих экспериментов на реальные летательные аппараты, несмотря на то, что в трубных экспериментах размер моделей, скорости потока, тепловые нагрузки и пр. могут сильно отличаться от режимов реального полёта, в то же время, параметры подобия (числа Маха, Рейнольдса, Стантона и пр.) соответствуют полётным.

Для транс- и сверхзвукового или сжимаемого потока, в большинстве случаев таких параметров как число Маха (отношение скорости потока к местной скорости звука) и Рейнольдса достаточно для полного описания потоков. Для гиперзвукового потока данных параметров часто бывает недостаточно. Во-первых, описывающие форму ударной волны уравнения становятся практически независимыми на скоростях от 10 М. Во-вторых, увеличенная температура гиперзвукового потока означает, что эффекты, относящиеся к неидеальным газам становятся заметными.

Учет эффектов в реальном газе означает бо́льшее количество переменных, которые требуются для полного описания состояния газа. Если стационарный газ полностью описывается тремя величинами: давлением, температурой, теплоёмкостью (адиабатическим индексом), а движущийся газ описывается четырьмя переменными, которая включает еще скорость, то горячий газ в химическом равновесии также требует уравнений состояния для составляющих его химических компонентов, а газ с процессами диссоциации и ионизации должен еще включать в себя время как одну из переменных своего состояния. В целом это означает, что в любое выбранное время для неравновесного потока требуется от 10 до 100 переменных для описания состояния газа. Вдобавок, разреженный гиперзвуковой поток (ГП), обычно описываемый в терминах чисел Кнудсена, не подчиняются уравнениям Навье-Стокса и требуют их модификации. ГП обычно категоризируется (или классифицируется) с использованием общей энергии, выраженной с использованием общей энтальпии (мДж/кг), полного давления (кПа) и температуры торможения потока (К) или скорости (км/с).

Для инженерных приложений У. Д. Хэйес развил параметр подобия, близкий к правилу площадей Виткомба, который позволяет инженерам применять результаты одной серии испытаний или расчетов, выполненных для одной модели, к разработке целого семейства подобных конфигураций моделей, при этом не проводя дополнительных испытаний или подробных расчетов.

Ударная волна, вызванная летательным аппаратом


Фото №1 ударных волн при обтекании модели сверхзвуковым потоком в аэродинамической трубе (Аэродинамическая лаборатория NASA)
NASA удалось получить фото ударной волны при преодолении самолётом звукового барьера


Подробнее: Распространениеударной волны, вызваннойсверхзвуковым самолётом

Жёлтая зона — след ударной волны на земле.

Снаружи конуса ударной волны(Маха), а на земле — перед жёлтой зоной самолёт не слышен.Распространение ударной волны, вызванной сверхзвуковым самолётом (источник). При обтекании сверхзвуковым воздушным потоком твёрдого тела на его передней кромке образуется ударная волна (иногда не одна, в зависимости от формы тела).

На фото №1 слева видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели…


Виды скачков уплотнения при сверхзвуковом обтеканиител различной формы

Кроме того скачки уплотнения могут быть также присоединенными, когда они примыкают к поверхности тела, двигающегося со сверхзвуковой скоростью или же отошедшими, если они с телом не соприкасаются.Обычно скачки становятся присоединенными, если сверхзвуковой поток обтекает какие-либо остроконечные поверхности.Для самолета это, например, может быть заостренная носовая часть, ПВД, острый край воздухозаборника. При этом говорят «скачок садится», например, на нос(вид а и в).А отошедший скачок может получиться при обтекании закругленных поверхностей, например, передней закругленной кромки толстого аэродинамического профиля крыла(вид б).Различные узлы корпуса летательного аппарата создают в полете довольно сложную систему скачков уплотнения…


Подробнее: Звуковой барьер и сверхзвуковой полёт

Однако, наиболее интенсивные из них – два. Один головной на носовой части и второй – хвостовой на элементах хвостового оперения.

На некотором расстоянии от летательного аппарата промежуточные скачки либо догоняют головной и сливаются с ним, либо их догоняет хвостовой.

В итоге остаются два скачка, которые, в общем-то, воспринимаются земным наблюдателем как один из-за небольших размеров самолета по сравнению с высотой полета и небольшим промежутком времени между ними…

Интенсивность ( другими словами энергетика) ударной волны (скачка уплотнения) зависит от различных параметров(скорости движения летательного аппарата, его конструктивных особенностей, условий среды и др.) и определяется перепадом давления на ее фронте.По мере удаления от вершины конуса Маха, то есть от самолета, как источника возмущений ударная волна ослабевает, постепенно переходит в обычную звуковую волну и в конечном итоге совсем исчезает…

На фронте-конуса Маха ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли миллиметра), почти скачкообразно происходят кардинальные изменения свойств потока — его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока… При гиперзвуковых скоростях (число Маха=5 и выше) температура газа достигает нескольких тысяч кельвинов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта). Фронт ударной волны по мере удаления от аппарата постепенно принимает почти правильную коническую форму, перепад давления на нём уменьшается с увеличением расстояния от вершины конуса, и ударная волна превращается в звуковую…

Подробнее читать Звуковой барьер. О нем и вещах, ему сопутствующих…

Характеристики потока

В то время как определение гиперзвукового потока (ГП) достаточно спорно по причине отсутствия четкой границы между сверхзвуковым и гиперзвуковым потоками, ГП может характеризоваться определенными физическими явлениями, которые уже не могут быть проигнорированы при рассмотрении, а именно:

  • тонкий слой ударной волны;
  • образование вязких ударных слоев;
  • появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам;
  • высокотемпературный поток.

Тонкий слой ударной волны

По мере увеличения скорости и соответствующих чисел Маха, плотность позади ударной волны (УВ) также увеличивается, что соответствует уменьшению объема сзади от УВ благодаря сохранению массы. Поэтому, слой ударной волны, то есть объем между аппаратом и УВ становится тонким при высоких числах Маха, создавая тонкий пограничный слой (ПС) вокруг аппарата.

Образование вязких ударных слоев

Часть большой кинетической энергии, заключенной в воздушном потоке, при М > 3 (вязкое течение) преобразуется во внутреннюю энергию за счет вязкого взаимодействия. Увеличение внутренней энергии реализуется в росте температуры. Так как градиент давления, направленный по нормали к потоку в пределах пограничного слоя, приблизительно равен нулю, существенное увеличение температуры при больших числах Маха приводит к уменьшению плотности. Таким образом, ПС на поверхности аппарата растет и при больших числах Маха сливается с тонким слоем ударной волны вблизи носовой части, образуя вязкий ударный слой.

Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам

В важной проблеме перехода ламинарного течения в турбулентное для случая обтекания летательного аппарата ключевую роль играют волны неустойчивости, образующиеся в ПС. Рост и последующее нелинейное взаимодействие таких волн преобразует изначально ламинарный поток в турбулентное течение

На до- и сверхзвуковых скоростях ключевую роль в ламинарно-турбулентном переходе играют волны Толмина-Шлихтинга, имеющие вихревую природу. Начиная с М = 4,5 в ПС появляются и начинают доминировать волны акустического типа (II мода или мэкавская мода), благодаря которым происходит переход в турбулентность при классическом сценарии перехода (существует также by-pass механизм перехода).

Высокотемпературный поток

Высокоскоростной поток в лобовой точке аппарата (точке или области торможения) вызывает нагревание газа до очень высоких температур (до нескольких тысяч градусов). Высокие температуры, в свою очередь, создают неравновесные химические свойства потока, которые заключаются в диссоциации и рекомбинации молекул газа, ионизации атомов, химическим реакциям в потоке и с поверхностью аппарата. В этих условиях могут быть существенны процессы конвекции и радиационного теплообмена.

Почему надо бояться гиперзвуковых ракет?

Почему гиперзвуковое оружие считается столь прорывным и вызывает непреодолимый страх у противника. Дело в том, что каждая страна, являющаяся сильной военной державой, обладает не только наступательным, но и оборонительным вооружением.

С появлением межконтинентальных баллистических ракет, способных поражать цели противника на расстоянии многих тысяч километров, самые мощные военные державы (Россия, США, Израиль и др.) позаботились о так называемых противоракетных щитах, т. е. военных технологиях, которые могли бы защитить от этих самых межконтинентальных ракет. Каким образом? Обнаружением и уничтожением на подлёте.

Это было возможным, поскольку, во-первых, такая ракета летит по заданной траектории, которую возможно вычислить. Во-вторых, время её полёта довольно длительное. Его было достаточно для принятия решения, в том числе согласования действий с вышестоящим руководством. Последний момент важен. Всё управление вооруженными силами находится в руках президентов (речь в первую очередь о США и России). Без их одобрения никто не может принять решение о перехвате и тем более ответном ударе. Весь процесс занимает время.

Так вот, главная угроза для противника заключается в том, что теперь у него нет времени на принятие ответного решения. Скорость полета гиперзвуковой ракеты слишком велика. Её невозможно обнаружить существующими средствами слежения (она умеет уходить от радаров) или вычислить траекторию полета (она её постоянно меняет) и сбить на дальнем расстоянии. Но даже если и удастся обнаружить, времени на ответ всё равно не останется.

Таким образом, весь ядерный потенциал, накопленный в разных странах до сегодняшнего дня, одномоментно стал бесполезным. Также можно говорить об исчезновении определенного военного равновесия, которое давало владение ядерным оружием самыми сильными державами. Обладание новым неуязвимым для противника видом вооружения даёт мощный приоритет одной из сторон. Ну и, соответственно, подстёгивает другую к скорейшей разработке чего-то ответного. Гонка вооружений продолжается!

Снаряд со стабилизаторами

Идея состояла в том, чтобы придать снаряду устойчивость в полете исключительно «ракетным» способом. В его конструкцию были включены стабилизаторы, раскрывающиеся после выхода из дульной части ствола. Таким образом, невращающийся артиллерийский снаряд мог обеспечить точность попадания не худшую, чем выпущенный из нарезного канала. Достоинства нового боеприпаса этим не исчерпывались: усиливалась сила кумулятивного воздействия. Кроме того, на Юргинском машиностроительном заводе не стали противопоставлять разные способы поражения бронетехники. Противотанковая пушка «Рапира» может стрелять и ракетами, запускаемыми из ствола, для этого требуется дополнительное оборудование, которое совсем несложно установить в полевых условиях.

Характеристики двигателя ЗМЗ-511/513 ГАЗ-53, 3307, ГАЗ-66

Литература

Параметры подобия

Категоризация воздушного потока основана на ряде параметров подобия , которые позволяют упростить почти бесконечное количество тестовых примеров в группы подобия. Для трансзвукового и сжимаемого течения только числа Маха и Рейнольдса позволяют хорошо классифицировать многие случаи течения.

Однако для гиперзвуковых течений требуются другие параметры подобия. Во-первых, аналитические уравнения для угла наклона скачка уплотнения почти не зависят от числа Маха при высоких (~> 10) числах Маха

Во-вторых, образование сильных толчков вокруг аэродинамических тел означает, что число Рейнольдса набегающего потока менее полезно для оценки поведения пограничного слоя над телом (хотя оно все еще важно). Наконец, повышенная температура гиперзвуковых потоков означает, что эффекты реального газа становятся важными

По этой причине исследования в области гиперзвука часто называют аэротермодинамикой , а не аэродинамикой .

Введение эффектов реального газа означает, что для полного описания состояния газа требуется больше переменных. В то время как неподвижный газ может быть описан тремя переменными ( давление , температура , показатель адиабаты ), а движущийся газ — четырьмя ( скорость потока ), горячий газ в химическом равновесии также требует уравнений состояния для химических компонентов газа, и газ в неравновесном состоянии решает эти уравнения состояния, используя время как дополнительную переменную. Это означает, что для неравновесного потока может потребоваться от 10 до 100 переменных для описания состояния газа в любой момент времени. Кроме того, разреженные гиперзвуковые потоки (обычно определяемые как потоки с числом Кнудсена выше 0,1) не подчиняются уравнениям Навье – Стокса .

Гиперзвуковые потоки обычно классифицируются по их общей энергии, выраженной как общая энтальпия (МДж / кг), полное давление (кПа-МПа), давление торможения (кПа-МПа), температура торможения (K) или скорость потока (км / с). .

Уоллес Д. Хейс разработал параметр подобия, аналогичный правилу площади Уиткомба , который позволял сравнивать похожие конфигурации.

АРМИЯ РОССИИ

Объявления о продаже ГАЗ 69

Навигация

Режимы [ править ]

Гиперзвуковое течение можно приблизительно разделить на несколько режимов. Выбор этих режимов грубый из-за размытия границ, где можно обнаружить тот или иной эффект.

Идеальный газ

В этом режиме газ можно рассматривать как идеальный газ . Расход в этом режиме все еще зависит от числа Маха. Моделирование начинает зависеть от использования стенки с постоянной температурой, а не адиабатической стенки, обычно используемой при более низких скоростях. Нижняя граница этой области составляет около 5 Махов, когда ПВРД становятся неэффективными, а верхняя граница — около 10-12 Махов.

Двухтемпературный идеальный газ

Это подмножество режима идеального газа, в котором газ можно считать химически совершенным, но вращательную и колебательную температуры газа следует рассматривать отдельно, что приводит к двум температурным моделям. См., В частности, моделирование сверхзвуковых сопел, где становится важным вибрационное замораживание.

Диссоциированный газ

В этом режиме двухатомные или многоатомные газы (газы, присутствующие в большинстве атмосфер) начинают диссоциировать, когда они вступают в контакт с головной ударной волной, создаваемой телом. Катализ поверхности играет роль в расчете нагрева поверхности, а это означает, что тип материала поверхности также влияет на поток. На нижней границе этого режима любой компонент газовой смеси сначала начинает диссоциировать в точке торможения потока (которая для азота составляет около 2000 K). На верхней границе этого режима эффекты ионизации начинают сказываться на потоке.

Ионизированный газ

В этом режиме заселенность ионизированных электронов застойного потока становится значительной, и электроны необходимо моделировать отдельно. Часто с температурой электронов обращаются отдельно от температуры остальных компонентов газа. Эта область встречается при скоростях набегающего потока около 3-4 км / с. Газы в этой области моделируются как неизлучающая плазма .

Режим с преобладанием излучения

При скорости выше 12 км / с передача тепла транспортному средству меняется с преобладающей кондуктивной на радиационную. Моделирование газов в этом режиме делится на два класса:

  1. Оптически тонкий : газ не поглощает повторно излучение, исходящее от других частей газа.
  2. Оптически толстый: излучение следует рассматривать как отдельный источник энергии.

Моделирование оптически толстых газов чрезвычайно сложно, поскольку из-за расчета излучения в каждой точке вычислительная нагрузка теоретически увеличивается экспоненциально по мере увеличения количества рассматриваемых точек.

Характеристики потока [ править ]

Хотя определение гиперзвукового потока может быть довольно расплывчатым и, как правило, спорным (особенно из-за отсутствия разрыва между сверхзвуковыми и гиперзвуковыми потоками), гиперзвуковой поток может характеризоваться определенными физическими явлениями, которые нельзя больше аналитически игнорировать, как в сверхзвуковом потоке . Особенности гиперзвуковых течений заключаются в следующем:

  1. Ударный слой
  2. Аэродинамический обогрев
  3. Энтропийный слой
  4. Эффекты реального газа
  5. Эффекты низкой плотности
  6. Независимость аэродинамических коэффициентов от числа Маха.

Малое расстояние отрыва от удара

По мере увеличения числа Маха тела плотность за создаваемой телом, также увеличивается, что соответствует уменьшению объема за ударной волной из-за сохранения массы . Следовательно, расстояние между головной ударной волной и телом уменьшается с увеличением числа Маха.

Вязкое взаимодействие

Часть большой кинетической энергии, связанной с потоком при высоких числах Маха, преобразуется во внутреннюю энергию в жидкости из-за вязких эффектов. Увеличение внутренней энергии реализуется как повышение температуры. Поскольку градиент давления, нормальный к потоку внутри пограничного слоя, приблизительно равен нулю для гиперзвуковых чисел Маха от низких до умеренных, повышение температуры через пограничный слой совпадает с уменьшением плотности. Это вызывает расширение нижней части пограничного слоя, так что пограничный слой над телом становится толще и часто может сливаться с ударной волной вблизи передней кромки тела.

Высокотемпературный поток

Высокие температуры из-за проявления вязкой диссипации вызывают неравновесные свойства химического потока, такие как колебательное возбуждение, диссоциацию и ионизацию молекул, что приводит к конвективному и .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector