Гексоген своими руками видео

Способы получения

В Интернете тема «как сделать гексоген в домашних условиях» весьма широко представлена на западных сайтах многих полуподпольных организаций типа анархистов и т.п. Такие страницы существуют и на русском языке (причём часто употребляют намеренно ошибочное написание вещества как «гексаген»), но вполне разумно, что государственные органы блокируют подобные ресурсы.

Несмотря на распространённое мнение, сделать гексоген в домашних условиях возможно лишь чисто теоретически, так как это не только требует применения достаточно серьёзных производственных технологий (соблюдения температурных режимов, давление, катализаторы), но и сопровождается крайне высоким риском для жизни и здоровья неспециалиста, поскольку в процессе задействуются большие количества дымящей химически-чистой азотной кислоты. Кроме того, в кустарных условиях показатели конечного выхода ВВ невелики и редко превышают 10 процентов по массе азотной кислоты.

Метод Герца

Открывший свойства гексогена как взрывчатки немецкий учёный Герц разработал достаточно простой лабораторный метод его получения. Но и этот метод требует использования аммиака и формальдегида — то есть сырья, которое хотя и может считаться общедоступным, но только при наличии достаточно развитой промышленности.

Метод Герца, именуемый также «окислительным», заключается в непосредственном нитровании гексаметилентетрамина (уротропина) концентрированной азотной кислотой. В виде последовательности химических реакций он выглядит следующим образом:

Производство гексогена по этому методу велось в Германии, Англии и других странах (в том числе с середины 1930-х годов в СССР) на установках непрерывного действия. Метод имеет ряд недостатков, главным из которых является малый выход гексогена по отношению к сырью.

Метод «К»

Разработан в Германии химиком Кноффлером в 1936 году. Позволяет повысить выход гексогена по сравнению с методом Герца за счёт добавления в азотную кислоту нитрата аммония (аммиачной селитры), который взаимодействует с побочным продуктом нитрования — формальдегидом. К недостаткам метода относят большой расход сырья и и весьма сложный процесс регенерации азотной кислоты и аммонийной селитры.

Метод «КА»

Разработан в Германии, предусматривает, по сравнению с методом «К», применение в качестве основного реагента не уротропина, а уксусного ангидрида. При этом в жидкий уксусный ангидрид дозируется соответствующее количество динитрата уротропина и раствора аммиачной селитры в азотной кислоте. Основным недостатком метода является получение гексогена с примесями и пониженной температурой плавления (до 192 градусов).

Метод «Е»

Тоже разработан в Германии химиком Эльбе. Ещё один вариант уксусно-ангидридной методики, по которому гексоген получается взаимодействием пара-формальдегида с аммиачной селитрой в среде уксусного ангидрида. В качестве катализатора применяется фтористый бор. Так же, как и по методу «КА», получаемый гексоген образуется с повышенным содержанием примесей.

Метод «W»

Разработан в 1934 Вольфрамом, активно применялся в Германии во время Второй мировой войны. По этому методу происходит взаимодействие аммиака с серным ангидридом (калиевой солью сульфаминовой кислоты), а затем из полученных иминосульфонатов (так называемой «белой соли») при обработке серно-азотной кислотной смесью образуется гексоген. Выход продукта по этому методу достигает 80% от расхода сырья, но использование высококонцентрированной кислотной смеси значительно снижает параметры безопасности.

Метод Бахмана-Росса

Разработан в США, активно применялся также в Канаде и Великобритании. Близок к методу «КА», который в данной разработке фактически аналогичен «реакции Росса». Но далее применяется технология комбинирования в нитромассе двух растворов — уротропина в уксусной кислоте и аммиачной селитры в азотной кислоте. Это увеличивает процент выхода конечного продукта по сырью, облегчает регенерацию и делает весь процесс значительно более технологичным и безопасным.

Кустарно произведённый гексоген

Открытие

Гексоген был создан в 1898 году Георгом Фридрихом Хеннинг, который получил немецкий патент (патент № 104280) для его изготовления путем нитролиза гексамина (гексаметилентетрамина) с концентрированной азотной кислотой. В этом патенте упоминались медицинские свойства вещества; однако еще три немецких патента, полученные Хеннингом в 1916 году, описывали гексоген как вещество, пригодное для использования в бездымных пропеллентах. Немецкие военные начали исследование его использования в 1920 году, ссылаясь на него как на гексоген. Результаты исследований и разработок не были опубликованы до тех пор, пока Эдмунд фон Герц, описанный как австрийский, а затем и немецкий гражданин, не получил британский патент в 1921 году и патент Соединенных Штатов в 1922 году. Обе заявки на патент были рассмотрены в Австрии. Британские заявки на патент включали производство взрывчатого вещества гексогена (RDX) путем нитрования, его использование с или без других взрывчатых веществ, в качестве взрывного заряда и в качестве детонатора. Заявка на патент США предназначалась для использования полого взрывного устройства, содержащего RDX, и крышки детонатора, содержащей RDX. В 1930-х годах Германия разработала усовершенствованные методы производства гексогена.

История[править | править код]

Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин. Однако в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой [источник?] яд.

Лишь в 1920 году Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

История[ | ]

Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин. Однако, в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой [источник?

] яд.

Лишь в 1920 году Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

характеристики

Физические свойства

Кусочки тротила

Тринитротолуол может иметь две различные модификации ( полиморфизм ), которые можно различить по цвету. Стабильная моноклинная форма образует светло-желтые игольчатые кристаллы, плавящиеся при 80,4 ° C. Метастабильная орторомбическая форма образует оранжевые кристаллы. При нагревании до 70 ° C переходит в моноклинную форму. Соединение очень плохо растворяется в воде, умеренно растворяется в метаноле (1%) и этаноле (3%), но легко растворяется в эфире , этилацетате (47%), ацетоне , бензоле , толуоле (55%) и пиридине . Обладая низкой температурой плавления 80,4 ° C, TNT можно плавить в водяном паре и разливать в формы. Соединение можно перегонять в вакууме. Согласно Антуану, функция давления пара получается из log 10 (P) = A− (B / (T + C)) (P в барах, T в K) с A = 5,37280, B = 3209,208 и C = -24,437 дюймов. температурный диапазон от 503 К до 523 К. Соединение выдерживает постоянный нагрев до 140 ° С. Выделение газа начинается выше 160 ° C. Начиная с 240 ° C, происходит дефлаграция с сильным образованием сажи. TNT ядовит и может вызывать аллергические реакции при попадании на кожу. Придает коже яркий желто-оранжевый цвет.

Параметры взрыва

Тротил — одно из самых известных, химически однородных, т.е. состоящих только из одного компонента, взрывчатых веществ. Как и все гомогенные взрывчатые вещества, TNT обязан своей взрывоопасностью внутренней химической нестабильности и образованию гораздо более стабильных газообразных продуктов во время взрыва. Горючее, необходимое для взрыва ( восстановитель в виде атомов углерода) и окислитель ( окислитель в виде нитрогрупп), содержатся в самой молекуле TNT. Химически говоря , при взрыве в внутримолекулярной очень быстром и экзотермическом ходе окислительно — восстановительной реакции , вызванной детонационным начинается. В результате получаются более стабильные и низкоэнергетические продукты z. B. азот , двуокись углерода, метан, окись углерода и цианистый водород . Последние могут возникать из-за недостаточного содержания кислорода в молекуле.

Если вначале воспламенилось достаточное количество вещества, высвободившаяся энергия поддерживает реакцию, и все количество вещества вступает в реакцию. Реакция протекает в очень быстрой и узкой реакционной зоне, через которую вещество бежит как волна . При использовании мощных взрывчатых веществ скорость этой зоны реакции достигает нескольких тысяч метров в секунду, т.е. превышает внутреннюю скорость звука. Выделяющаяся энергия и образование газов в качестве продуктов реакции приводят к чрезвычайно резкому повышению давления и температуры, что объясняет эффективность взрывчатых веществ.

Важными параметрами безопасности взрыва являются:

  • Теплота взрыва : 3725 кДж кг -1 (H 2 O (л)) , 3612 кДж кг -1 (H 2 O (г))
  • : 975 л кг -1
  • Скорость детонации : 6900 м / с (плотность: 1,6 г / см 3 )
  • Выпуклость свинцового блока : 30 см 3 / г
  • Температура дефлаграции : 300 ° C
  • Чувствительность к удару : 15 Нм (1,5 км / мин)
  • Чувствительность к трению : нет реакции до 353 Н (36 кПа)
  • Предельный диаметр при испытании стальной гильзы : 5 мм.

Физические свойства

Гексоген — белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес — 1,816 г/см³, молярная масса — 222,12 г/моль. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше — в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

Плавится гексоген при температуре 204,1 °C с разложением, при этом его чувствительность к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Прессуется плохо, поэтому, чтобы его лучше спрессовать, гексоген флегматизируют в ацетоне.

Навигация

Видеообзор пистолета Оса ПБ-4-1Мл

История

Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин. Однако, в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой [источник?] яд.

Лишь в 1920 году Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

Открытие

Гексоген был создан в 1898 году Георгом Фридрихом Хеннинг, который получил немецкий патент (патент № 104280) для его изготовления путем нитролиза гексамина (гексаметилентетрамина) с концентрированной азотной кислотой. В этом патенте упоминались медицинские свойства вещества; однако еще три немецких патента, полученные Хеннингом в 1916 году, описывали гексоген как вещество, пригодное для использования в бездымных пропеллентах. Немецкие военные начали исследование его использования в 1920 году, ссылаясь на него как на гексоген. Результаты исследований и разработок не были опубликованы до тех пор, пока Эдмунд фон Герц, описанный как австрийский, а затем и немецкий гражданин, не получил британский патент в 1921 году и патент Соединенных Штатов в 1922 году. Обе заявки на патент были рассмотрены в Австрии. Британские заявки на патент включали производство взрывчатого вещества гексогена (RDX) путем нитрования, его использование с или без других взрывчатых веществ, в качестве взрывного заряда и в качестве детонатора. Заявка на патент США предназначалась для использования полого взрывного устройства, содержащего RDX, и крышки детонатора, содержащей RDX. В 1930-х годах Германия разработала усовершенствованные методы производства гексогена.

Гексоген (взрывчатые вещества)

Гесоген (правильное название — триметилентринитроамин) бризантное взрывчатое вещество, относящееся к группе ВВ повышенной мощности. Плотность 1.8 г/куб.см.

, температура плавления 202 градуса, температура вспышки 215-230 градусов, чувствительность к удару 10 кг. груза 25 см., энергия взрывчатого превращения 1290 ккал/кг, скорость детонации 8380 м/сек.

, бризантность 24 мм., фугасность 490 куб.см.

Нормальное агрегатное состояние — мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен, неагрессивен. С металлами в химическую реакцию не вступает. Прессуется плохо. От удара, прострела пулей взрывается. Загорается охотно и горит белым ярким шипящим пламенем. Горение переходит в детонацию (взрыв)

В чистом виде применяется только для снаряжения отдельных образцов капсюлей-детонаторов. Для подрывных работ в чистом виде не используется. Используется для промышленного изготовления взрывчатых смесей (ПВВ-4 (пластит), ЭВВ, ТГА, МС, ТГ-50). Обычно эти смеси применяются для снаряжения некоторых видов боеприпасов.

Все эти работы проводятся в промышленных условиях на специальном оборудовании

От автора. С лета 1999 года слово «Гексоген» сверлит ухо также, как долгие годы у журналистов не было иного названия для взрывчатки кроме как «Динамит».

Название «гексоген» стало популярным в средствах массовой пропаганды после памятных диверсионных актов в Москве и Волгодонске , когда подряд было взорвано несколько домов.

Однако, судя по отдельным признакам, несложным расчетам, проведенных автором на основе данных, приводимых в прессе, скорее всего в этих случаях применялось одно из аммиачноселитренных взрывчатых веществ.

Дело в том, что гексоген в чистом виде применяется крайне редко, применение его в этом виде весьма опасно для самих взрывников, производство требует хорошо налаженного промышленного процесса. Запасов гексогена нигде не имеется. Аммиачноселитренные же ВВ сравнительно легко произвести даже на слабой промышленной базе и при минимуме химических познаний. При этом их фугасность выше, чем у тротила и их применение для подобных диверсий более целесообразно.

Веремеев Ю.Г.Сапер

Химические и физические свойства вещества

«Научное» название гексогена — циклотриметилентринитрамин — описывает его структурную химическую формулу, обозначаемую как (CH2)3N3(NO2)3. Вещество не растворяется в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, хорошо — в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

Внешне гексоген — кристаллический порошок белого цвета, не имеющий вкуса и запаха, хотя при этом весьма тосичен. Вещество имеет плотность 1,816 г/куб.см и молярную массу 222,12 г/моль. Гексоген начинает плавиться при температуре 204,1 градуса Цельсия (с разложением), при этом его высокая чувствительность к механическим воздействиям возрастает ещё больше. Потому гексоген не плавят, а прессуют, хотя и такому воздействию он поддаётся плохо.

К основным характеристикам гексогена как взрывчатого вещества относятся:

Параметры Значения
Скорость детонации 8640 м/с
Давление во фронте ударной волны 33,7 ГПа
Фугасность 470 мл
Бризантность по Гессу 24 мм
Бризантность по Касту 4,1-4,8
Объём газообразных продуктов взрыва 908 л/кг
Температура вспышки 230 °C
Теплота взрыва 5,45 МДж/кг
Теплота сгорания 2307 ккал/кг

По сравнению с тротилом у гексогена почти в 1,3 раза выше скорость распространения ударной волны в заряде (детонации) и в 1,7 раза выше мощность взрыва.

Схема детонации взрывчатого вещества

Великобритания

В Соединенном Королевстве (Великобритания) RDX изготавливался с 1933 года исследовательским отделом на экспериментальном заводе в Королевском арсенале в Вулвиче (Лондон), а на более крупном пилотном заводе, построенном в аббатстве RGPF Waltham недалеко от Лондона, в 1939 году. В 1939 году двухкомпонентный промышленный завод был спроектирован для установки на новом участке площадью 700 акров (280 га), ROF Bridgwater, вдали от Лондона, а производство RDX началось в городе Бриджуотер на одном объекте в августе 1941 года.

Завод ROF Bridgwater использовал в качестве сырья аммиак и метанол: метанол превратился в формальдегид, а часть аммиака превратилась в азотную кислоту, которая была сконцентрирована на производстве RDX. Остальную часть аммиака подвергали взаимодействию с формальдегидом с получением гексамина. Завод гексамина был построен компанией Imperial Chemical Industries. Он включал некоторые функции, основанные на данных, полученных в США (США). RDX получали путем непрерывного добавления гексамина и концентрированной азотной кислоты в охлажденную смесь гексамина и азотной кислоты в нитраторе. Состав гексогена при этом не менялся. RDX очищали и обрабатывали по назначению; также было проведено восстановление и повторное использование метанола и азотной кислоты. Очистные установки гексамин-нитрования и RDX были дублированы, чтобы обеспечить некоторую страховку от потери продукции из-за пожара, взрыва или воздушного нападения.

Соединенное Королевство и Британская империя боролись без союзников против нацистской Германии до середины 1941 года и должны были быть самодостаточными. В то время (1941) Великобритания имела способность производить 70 тонн (71 т – 160 000 фунтов) RDX в неделю; и Канада, и США рассматривались как клиенты для поставок боеприпасов и взрывчатых веществ, включая RDX. Предполагается, что к 1942 году ежегодные потребности Королевских ВВС составляли 52 000 тонн (53 000 тонн) RDX, большая часть которых поступала из Северной Америки (Канада и США). Модель формулы гексогена – на картинке ниже.

История пластичных взрывчатых веществ

Девятнадцатый век стал настоящим «звездным часом» для химиков, которые занимались разработкой новых видов взрывчатых веществ. В 1867 году Альфредом Нобелем был запатентован динамит, который можно назвать первым пластичным взрывчатым веществом.

Первый вид динамита был изготовлен путем смешивания нитроглицерина с кизельгуром (кремниевая земля). Взрывчатое вещество получилось довольно мощным, имело приемлемый уровень безопасности (по сравнению с нитроглицерином) и обладало консистенцией теста.

Во время Второй мировой войны в Германии было разработано пластичное взрывчатое вещество гексопласт, которое состояло из смеси гексогена (75%), динитротолуола, тротила и нитроцеллюлозы. Позже американцы «позаимствовали» этот состав и начали его серийное производство под наименованием С-2.

В Великобритании первое пластичное взрывчатое вещество появилось еще до начала ПМВ, оно называлось PE-1 и использовалось для проведения взрывных работ. РЕ-1 состоял из 88% гексогена и 12% нефтяного масла. Позже этот состав был улучшен, в него добавили эмульгатор лецитин. Под наименованием РЕ-2 эта взрывчатка активно использовалось англичанами в период Второй мировой войны. Причем она находилась на вооружении специальных подразделений Великобритании, возможно именно поэтому пластичная взрывчатка стала в общественном сознании обязательным атрибутом диверсанта.

В 50-е годы англичане создали еще один вид ПВВ – РЕ-4. Причем эта разработка получилась настолько хорошо, что находится на вооружении английской армии и сегодня. В его состав входит: 88% гексогена, 11% специальной смазки DG-29 и эмульгатор. Данное взрывчатое вещество получилось весьма удачным – недорогим, надежным и довольно мощным. РЕ-4 используется для проведения взрывных работ, а также для снаряжения некоторых видов боеприпасов.

В США начали производить пластичную взрывчатку во время Второй мировой войны. Первым американским ПВВ стала взрывчатка С-1, аналогичная по составу английской РЕ-2. Чуть позже она была несколько модифицирована до С-2, а затем и С-3. Все эти ПВВ в качестве взрывчатого компонента использовали гексоген, отличались лишь пластификаторы.

В 1967 года была запатентована пластичная взрывчатка С-4, которая позже стала практически синонимом ПВВ. С-4 весьма успешно применялась во Вьетнаме, в настоящее время существует несколько классов этой взрывчатки, они отличаются друг от друга количеством гексогена.

С использованием С-4 во Вьетнаме связано несколько курьезных историй. Поначалу применение этого взрывчатого вещества привело к частым случаям тяжелых отравлений среди американских солдат. Дело в том, что они пытались использовать куски С-4 вместо привычной для американцев жвачки. Гексоген, входящий в состав С-4, является сильным ядом, он и вызывал отравления. После этого в инструкцию к С-4 был внесен пункт о том, что жевать пластит запрещено.

Вторая группа несчастных случаев была связана с попытками военнослужащих использовать С-4 в качестве топлива для приготовления пищи. Пластит не взрывался, но пары гексогена, попав вместе с дымом в пищу, также приводили к отравлениям. После этого в инструкциях к взрывчатке появился еще один пункт: «Запрещено использовать для приготовления пищи».

Следует отметить, что сегодня на вооружении американской армии находится большое количество разновидностей пластичной взрывчатки. Они отличаются и по взрывному компоненту, и по пластификаторам.

Первой советской пластичной взрывчаткой, которую начали выпускать массово, стала ПВВ-4. Этот пластит состоит из 80% гексогена, 15% смазочного масла и 5% стеарата кальция. Она появилась примерно в конце 40-х годов, однако в войска практически не поступала.

В 60-е годы в СССР был создан еще один вид пластичной взрывчатки – ПВВ-5А, который был полным аналогом американской С-4. Эту взрывчатку использовали для снаряжения мин МОН и динамической брони для танков.

В тот же период для систем разминирования была создана пластиковая взрывчатка ПВВ-7 с повышенным уровнем фугасности.

Долгое время пластичная взрывчатка считалась в СССР секретной, поэтому в строевые части она почти не поступала. Ситуация изменилась только с началом войны в Афганистане.

Где используют гексоген

Уже к началу Второй Мировой войны гексоген массово синтезировался во всех крупных индустриально развитых странах. Небезопасность в обращении с этим веществом привела к тому, что в своём «натуральном» виде в зарядах оно практически не применялось, но при этом стало основным компонентом для различных взрывчатых смесей. Как правило, гексоген используется флегматизированным, с уже внесённой добавкой, уменьшающей опасность взрыва гексогена от случайных причин.

«Прыгающие бомбы», использованные Королевскими ВВС для бомбардировок Германии, содержали заряды из трёх тонн «Торпекса». Этим же веществом снаряжались британские сейсмические бомбы «Толлбой». В авиационных бомбах и торпедах США и Великобритании во Второй мировой войне применялась несколько иная «Композиция H6», считающаяся более безопасной.

Вплоть до сегодняшнего дня гексоген остаётся одним из наиболее востребованных взрывчатых веществ. Его применяют для изготовления детонаторов, снаряжения боеприпасов, при выполнении взрывных работ в разных сферах промышленности и строительства. Также может использоваться как компонент топлива в твердотопливных ракетных двигателях. К сожалению, мощность и относительная лёгкость в получении и применении этого взрывчатого вещества давно нашла применение у различных террористов.

Место террористического взрыва гексогена в Магнитогорске

Дальнейшее производство

НКРР поручил трем компаниям разработать опытные установки. Это были: компания Western Cartridge, E. I. du Pont de Nemours & Company и компания Теннесси Истман, часть Eastman Kodak. В Eastman Chemical Company (TEC), ведущем производителе ангидрида уксусной кислоты, Werner Emmanuel Bachmann разработал непрерывный процесс для создания RDX. RDX имел решающее значение для военных операций, и тогдашний процесс его производства был слишком медленным. В феврале 1942 года TEC начал выпускать небольшие объемы RDX на своем экспериментальном заводе Wexler Bend, что привело к тому, что правительство США разрешило TEC проектировать и строить Works of Holston Ordnance Works (HOW) в июне 1942 года. К апрелю 1943 года там производился RDX. В конце 1944 года завод «Холстон» и завод боеприпасов «Вабаш», в котором использовался процесс Вулвича, производили 25 000 коротких тонн (23 000 тонн — 50 миллионов фунтов) композиции «В» в месяц.

История

Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин. Однако, в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой [источник?] яд.

Лишь в 1920 году Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

Октоген

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector