Атомная электростанция, ее устройство, принцип работы
Содержание:
- Ссылки
- Предыстория
- Порядок избрания и прекращения полномочий
- Как происходит переработка топлива АЭС
- Страницы
- Резолюция Европарламента
- Важные события и даты
- Преимущества и недостатки использования АЭС
- Примечания
- Примечания
- [править] Принцип работы атомной электростанции
- История «мирного атома» в СССР и России
- Мировое развитие атомной энергетики
- Ученые СССР, работавшие в атомной энергетике
- Вывод
Ссылки
Предыстория
28 сентября 1942 года Госкомитет обороны СССР утвердил создание специальной ядерной лаборатории в Академии наук, а также принял решение разрешить производство урана. С 2005 года эта дата отмечается как День ядерной науки.
Российская атомная промышленность относится к 1940-м годам, когда она имела стратегическое значение – главным образом потому, что ее соперники пытались создать ядерное оружие.
После окончания ВОВ государство активизировало исследования и финансировало инициативу по созданию подобного оружия в СССР.
20 августа 1945 года специальный комитет начал исследования, посвященные урановому проекту. Главой Комитета стал Лаврентий Берия.
Это событие стало поворотным моментом. На следующий год развернули обширную программу.
Проект контролировал Игорь Курчатов, также известный как отец атомной бомбы и пионер ядерной энергии для гражданского использования.
Новая программа позволила использовать ядерную энергию в различных секторах экономики, таких как транспорт и энергетика.
Это был рассвет новой российской ядерной эры. В последующие десятилетия у нее были максимумы и минимумы, среди которых Чернобыльская катастрофа.
Российские ученые-ядерщики работали над крупномасштабными проектами, производя технологические достижения и превращая ядерный сектор в одну из самых успешных частей экономики.
Порядок избрания и прекращения полномочий
Требования, предъявляемые к кандидатам в президенты Туркмении:
- родившийся в Туркмении;
- владеющий туркменским языком;
- не моложе 40 лет;
- в течение предшествующих 15 лет постоянно проживающий в Туркмении;
- работающий в государственных органах, общественных организациях и отраслях народного хозяйства (статья 51 Конституции).
Президент избирается всеобщим прямым тайным голосованием сроком на семь лет (статья 52 Конституции). Количество президентских сроков не ограничено.
Полномочия президента Туркмении могут быть прекращены (статья 57 Конституции) в случае:
- невозможности выполнения им своих обязанностей по болезни. Меджлис на основании заключения создаваемой им независимой медицинской комиссии принимает решение о досрочном освобождении президента от должности. Такое решение принимается не менее чем двумя третями депутатов Меджлиса.
- В случае нарушения президентом Конституции и законов Меджлис может выразить недоверие президенту. Вопрос о недоверии может быть рассмотрен по требованию не менее чем двух третей депутатов Меджлиса. Решение о недоверии президенту принимается не менее чем тремя четвертями голосов депутатов Меджлиса. Вопрос о смещении президента с должности выносится на референдум.
Если президент по тем или иным причинам не может исполнять свои обязанности, впредь до избрания нового президента на основании решения Государственного совета безопасности на должность временно исполняющего обязанности президента Туркмении назначается один из заместителей председателя Кабинета Министров Туркмении. Выборы президента в этом случае должны быть проведены не позднее 60 дней со дня перехода его полномочий к временно исполняющему обязанности президента. Исполняющий обязанности президента не имеет права баллотироваться в президенты (статья 58).
Как происходит переработка топлива АЭС
Спустя год использования урана в ядерных реакторах необходимо производить его замену.
Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.
В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.
Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.
Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.
Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.
Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.
Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.
По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.
Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.
Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.
Страницы
Резолюция Европарламента
В феврале 2021 года Европарламент принял резолюцию по безопасности Белорусской АЭС. В ней говорится, что Островецкая атомная электростанция «начала вырабатывать электроэнергию 3 ноября 2020 года, несмотря на многочисленные сохраняющиеся проблемы безопасности и без доказательств степени выполнения рекомендаций экспертного обзора ЕС 2018 года и Международного агентства по атомной энергии». Европарламент выразил озабоченность расположением АЭС в 50 километрах от Вильнюса и высказал сожаление по поводу того, что станция строится, несмотря на протесты граждан Беларуси, и что члены белорусских неправительственных организаций, стремящиеся повысить осведомленность о строительстве станции в Островце, подвергаются преследованиям и незаконным арестам. Также Европарламент сожалеет о «постоянном отсутствии прозрачности и официальной информации о повторяющихся аварийных остановках реактора и отказах оборудования на этапе ввода станции в эксплуатацию в 2020 году, включая поломку четырех трансформаторов напряжения и неисправность систем охлаждения, в то время как на этапе строительства станции было известно о восьми инцидентах, включая два инцидента, связанные с корпусом реактора».
«Количество и частота инцидентов вызывают серьезную озабоченность в связи с плохим обеспечением качества и контроля на этапах проектирования и строительства станции и ее низкой эксплуатационной безопасностью, что должно быть должным образом рассмотрено в рамках экспертной оценки ЕС», — сказано в резолюции. Евросоюз призывает Беларусь обеспечить «полное соблюдение международных стандартов ядерной и экологической безопасности, а также прозрачное, всеобъемлющее и конструктивное сотрудничество с международными органами» и «прекратить избирательное применение стандартов и рекомендаций МАГАТЭ». Все рекомендации, которые даёт Европейская группа регуляторов ядерной безопасности (ENSREG) должны быть выполнены до того, как начнётся коммерческая эксплуатация станции.
Важные события и даты
Практически все время работы после запуска реактор использовался как исследовательский благодаря наличию петлевых установок и экспериментальных устройств. Обнинская АЭС принимала самое активное участие в следующих проектах:
- Испытания твэлов для ледокола «Ленин»
- Полный цикл испытания для 1-го и 2-го блоков Белоярской АЭС, строительство которой началось в 1958 году
- При помощи экспериментов на Обнинской АЭС создана первая транспортабельная атомная энергетическая установка ТЭС-3
- Важнейшая экспериментальная база для Ядерных энергетических установок для подводных лодок.
- Разработка реакторов ФЭИ – БР-5, БР-10 и БОР-60
- Активное участие в разработке реакторов на быстрых нейронах БН-350, БН-600 и БН-800
- Производились испытания для космических атомных установок «Топаз» и «Бук», и в 1970 именно на основе этих исследования создали первый в мире реактор-преобразователь «Топаз»
- Исследовательский реактор БОР-60 и исследовательский реакторы на быстрых нейронах БР
- Производились эксперименты для Билибинской АЭС, работающей в условиях крайнего севера.
- Создание нейтронного спектрометра
- Так же на станции осуществлено более десятка важных открытий и измерений в ядерной отрасли.
Преимущества и недостатки использования АЭС
Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:
- Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
- Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
- Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
- Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
- Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций
Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.
Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.
Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.
Примечания
Примечания
[править] Принцип работы атомной электростанции
Атомная электростанция представляет собой комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции. Атомные электростанции различаются по типу реактора (на быстрых и на медленных нейтронах), по виду отпускаемой энергии (АЭС и АТЭЦ), по количеству контуров (одноконтурные, двухконтурные, трехконтурные). В зависимости от типа конструкции в состав атомной электростанции могут входить: ядерный реактор, турбина, конденсатор, электрогенератор, парогенератор и др.
Ядерная реакция возникает при делении ядра атома. Ядра атомов разделяют нейтроны, которые попадающие в них извне. При этом возникают новые нейтроны и осколки деления, которые имеют огромную кинетическую энергию. Эта энергия передается теплоносителю, который поступает в парогенератор, где нагревает до кипения воду. Полученный при кипении пар вращает турбины, связанные с электрогенератором.
Ядерный реактор
Ядерным реактором называется устройство, осуществляющее управляемую реакцию деления ядра. Ядерный реактор состоит из многих элементов, таких как: ядерное горючее, замедлитель нейтронов, теплоноситель для вывода энергии и устройство для регулирования скорости реакции. Энергия, выделяемая из ядерного топлива, нагревает теплоноситель, который затем следует в парогенератор. Реактор окружают защитной оболочкой, задерживающей гамма-излучение.
Обычно в качестве горючего для ядерного реактора используются ядра изотопа урана, наиболее эффективно захватывающее медленные нейтроны. Захват медленных нейтронов происходит с гораздо большей вероятностью чем быстрых, поэтому в ядерных реакторах, которые работают на естественном уране, используются замедлители (вода, тяжёлая вода, бериллий, графит).
В качестве теплоносителей в ядерных реакторах на быстрых нейтронах используют жидкие металлы и газы, они дают возможность получить на выходе из реактора высокие температуры, позволяющие вырабатывать в парогенераторах пар высоких, сверхвысоких и закритических параметров. Теплоносители в реакторах на тепловых(медленных) нейтронах используют обычную и тяжелую воду, водяной пар, двуокись углерода.
Устройство для вывода энергии состоит из регулирующих и компенсирующих стержней. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.
Парогенератор
Парогенератором называется теплообменный аппарат, использующий теплоту первичного теплоносителя ядерного реактора, для производства водяного пара с давлением выше атмосферного. Теплоноситель из реактора, прокачивающийся насосами через парогенератор, отдает часть тепла, а затем снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура, находящейся под гораздо меньшим давлением, вследствие чего вода закипает. Образовавшийся пар поступает на паровую турбину, которая вращает электрогенератор, а затем в конденсатор, где пар охлаждают. Пар конденсируется и снова поступает в парогенератор. В конденсаторе используется вода из внешнего открытого источника.
Турбина и электрогенератор
Подавляющее большинство паровых турбин, устанавливаемых на АЭС с водоохлаждаемыми реакторами предназначены для работы на насыщенном паре. Тепловая энергия пара при его расширении в проточной части турбины превращается в кинетическую энергию потока пара, которая используется для вращения ротора турбины электрогенератора.
Конденсатор
В конденсатор поступают перегретые пары теплоносителя, охлаждающиеся до температуры насыщения, они конденсируются и переходят в жидкую фазу. Для конденсации пара от каждой единицы его массы отводят теплоту равную удельной теплоте конденсации. В качестве охлаждающей жидкости на АЭС используется большое количество воды, поступающее из водохранилища.
История «мирного атома» в СССР и России
XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.
Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.
На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.
Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:
- 1944 год – первые килограммы чистого урана на территории Европы и Азии;
- 1946 год – запущен первый в Евразии реактор;
- 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
- 1953 год – водородная бомба;
- 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.
Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».
Атомная энергетика России
Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.
Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов.
После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.
Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.
Мировое развитие атомной энергетики
Активная позиция СССР по освоению нового направления энергетики вызвала атомный бум во всём мире. В 1956 году в Великобритании, неподалёку от города Сискейл, начинает работу АЭС под названием Колдер Холл – первая за пределами нашей страны. Станция Шиппингпорт, вырабатывающая 60 МВт, в США выдала электрический ток в 1957 году. Дальше темпы нарастали как «снежный ком»:
- 1959 – Франция становится полноправным участником «мирового атомного энергетического клуба»;
- 1961 – Германия;
- 1962 – Канада;
- 1964 – Швеция;
- 1966 – Япония;
- 1976 – в мире идёт строительство 44 ядерных реакторов.
Казалось бы, атомная энергетика стала достойной альтернативой традиционным источникам, употребляемым для выработки энергоресурсов. Время и произошедшие события перечеркнули столь поспешные оптимистические выводы. Авария на атомной станции Три-Майл-Айленд в США, Чернобыльская катастрофа на Украине, трагедия Фукусимы-1 показали страшную опасность использования радиоактивных материалов.
Сегодня мировая атомная энергетика, по отчётам Агентства по атомной энергии на начало 2019 года, имеет в своём арсенале 449 реактора общей мощностью 392 ГВт, находящихся в 34 странах. Первыми в отрасли на 2018 год были:
Страна |
Реакторы (шт.) |
Выработка эл. энергии (млрд Вт·ч/год) |
Примечание |
США |
99 |
805,3 |
— |
Франция |
58 |
395,9 |
Признанный лидер атомной энергетики, почти 72% вырабатываемой электроэнергии в этой стране производится на АЭС |
Китай |
46 |
277,1 |
Держит высокие темпы ввода новых ядерных мощностей |
Россия |
37 |
191,3 |
— |
Республика Корея |
24 |
127,1 |
— |
Атомная энергетика
Поcледние 30 лет ядерная энергетика находится в глубоком кризисе, возникшем под воздействием:
- стабилизации цен на углеводороды;
- отсутствия роста уровня потребления энергоресурсов;
- увеличение капитальных затрат на строительство новых энергоблоков.
Ряд стран существенно ограничили свои программы модернизации и строительства АЭС.
Вопросы экономии и безопасности требуют принципиально новых подходов. И они появляются: создана плавучая АЭС в России, запущены в работу первые мини-АЭС. Разрабатываются реакторы высокого уровня безопасности с увеличенным КПД (коэффициент полезного действия).
Ученые СССР, работавшие в атомной энергетике
Над тем, чтобы создать первый в СССР ядерный реактор и атомную бомбу, первую в мире атомную станцию и советскую атомную подводную лодку работали лучшие умы Советского Союза. Кто они, люди, которые подарили нам атомную энергетику?
Игорь Васильевич Курчатов – считается «отцом атомной бомбы» и создателем множества научных открытий в области изучения атомов радиоактивных веществ. В конце 1940х Курчатов лично убедил Сталина в необходимости использовать атом в мирных целях. После этой встречи были подписаны около 60ти документов по развитию атомных исследований.
Зинаида Васильевна Ершова – «Мадам Кюри Советского Союза». Под руководством Курчатова смогла получить карбид урана и металлический уран. Интересно то, что в военное время Ершова находилась в эвакуации в Казахстане, добровольно — принудительно ее доставили в Москву «для работы по специальности».
Николай Антонович Доллежаль – главный конструктор реактора первой в мире АЭС. Возглавлял НИИхиммаш, ученые которого были привлечены к атомному проекту. Кроме того, Доллежаль возглавлял разработку энергетических реакторов для корабельных установок. Принимал участие в проектировании первой в СССР атомной бомбы.
Борис Григорьевич Дубовский – занимался проблемами радиационного облучения и безопасности АЭС. Изготовил первый дозиметр – прибор, для измерения дозы ионизирующего излучения. Участвовал в конструировании и запуске множества советских ядерных реакторов.
Интересно, что запуск Обнинской АЭС Игорь Курчатов отложил на 6 дней из-за того, что Дубовский улетел в Харьков и не мог вовремя вернуться в Россию.
Вывод
Основанная более шести десятилетий назад первая в мире атомная электростанция была невероятным прорывом, который показал, что в мире существует место для мирной ядерной энергетики в будущем.
С момента своего создания первая атомная станция в мире должна была перенести ранее ужасный и травматический характер ядерной энергии в позитивный ресурс для роста и процветания человечества.
Мало того что этот “квест” был успешным, и АЭС в Обнинске пробыла в эксплуатации с 1954 по 2002 гг. без единой аварии или разлива, она стала моделью стабильности, которой многие сегодняшние атомщики могли бы подражать.
Когда-то атомная электростанция была первой в мире, а сейчас она работает как музейный комплекс.