Возраст вселенной

Содержание:

Содержание

Содержание

Чем займутся Роман Полански и Лина Хиди

История космологии

Эра рекомбинации.

Началу звездной эры предшествовало то, что в возрасте 300000 лет Вселенная стала достаточно холодной для образования атомов водорода (т.е началась эра рекомбинации).

В это время Вселенная становится прозрачной для собственного излучения (до этого излучение непрерывно взаимодействовало с частицами вещества). Это излучение сейчас мы и наблюдаем в виде реликтового (фонового микроволнового) излучения.

В эпоху рекомбинации флуктуация плотности вещества стала разрастаться, так как этому не стало препятствовать излучение, и начали формироваться звезды и галактики.

Рождение звезды – материя в центре пылевого облака уплотняется до тех пор, пока сила гравитации не станет такой большой, что запустится самопроизвольная термоядерная ядерная реакция

Обозримая Вселенная

Прежде чем начать рассуждения о том, что находится за пределами Вселенной, необходимо понять, где эти самые пределы. Естественно, узнать о настоящих границах космического пространства мы не можем, но точно знаем, где заканчивается обозримая часть Вселенной – Метагалактика.

Наблюдаемый космос – это пространство, из которого наши технологии способны регистрировать рассеяние реликтового излучения. Те области, где оно заканчивается, и принято считать за границы обозримого космоса. Реликтовое излучение – это энергия, высвободившаяся во время Большого взрыва и распространяющаяся по Вселенной до сих пор. Примерный радиус Метагалактики составляет 46 миллиардов световых лет.

Обозримая Вселенная

Однако насчет обозримой Вселенной у ученых есть два противоположных мнения. Одни считают, что за пределами Метагалактики есть и другие системы, а мы наблюдаем лишь малую часть необъятного космоса. Другое мнение говорит о том, что это и есть вся Вселенная, и за ее пределами уже ничего нет.

Помимо Метагалактики, есть такое понятие, как область Хаббла. Так называют часть обозримого космоса, которую мы можем увидеть с помощью своих технологий. Она составляет примерно 13,8 миллиарда световых лет. Так как возраст Вселенной составляет примерно столько же, свет из ее более далеких областей до нас еще попросту не дошел. Область Хаббла рано или поздно расширится, увеличив количество наблюдаемых нами звездных систем.

Читайте также:

Размножение маранты делением куста

Сингулярность

Это то положение, которое существовало до того, как произошёл Большой взрыв и образовалась Вселенная.

Согласно общей теории относительности в центре чёрной дыры находится сингулярность. Это область, где нет времени и не применимы законы физики. Область, где всё сжимается до крошечных размеров под высоким давлением.

В космологии есть три понятия: космологическая сингулярность, гравитационная сингулярность и голая сингулярность.

Космологическая сингулярность

Это состояние Вселенной как до Большого взрыва — когда Вселенная представляла собой пространство, сжатое до крошечных размеров высоким давлением, с очень большой плотностью — так и сам Большой взрыв.

Гравитационная сингулярность

Это место в пространственно-временном континууме, через которое нельзя провести кривую (геодезическую линию), и где не работают законы теории относительности.

В физике, в частности по общей теории относительности, тела, обладающие малым зарядом и массой, движутся по геодезической линии пространственно-временного континуума.

Но в гравитационной сингулярности законы физики не применяются. Поэтому и линии провести невозможно.

Голая сингулярность

Это некая область в пространственно-временном континууме, в которой не действует один из общих принципов в физике — принцип причинности.

Этот принцип формулирует, как происшествия или действия воздействуют друг на друга. То есть согласно ему будущие действия не могут изменять происшествия в прошлом.

Иными словами, наше будущее не воздействует на наше прошлое и не обуславливает его.

По версиям физиков, попав в голую сингулярность, можно увидеть и прошлое, и будущее. Но чтобы туда попасть, нужно попасть в чёрную дыру, что делает опыты по изучению такой сингулярности довольно затруднительными, так как из чёрной дыры нельзя выбраться.

Узнайте больше про Сингулярность.

Эволюция Вселенной и этапы её развития

На сегодня принято выделять следующие фазы развития Вселенной:

  1. Планковское время — период от 10-43 до 10-11 секунд. В этот короткий промежуток времени, как полагают учёные, гравитационная сила «отделилась» от остальных сил взаимодействия.
  2. Эпоха рождения кварков – от 10-11 до 10-2 секунд. В этот период произошло зарождение кварков и разделение известных физических сил взаимодействия.
  3. Современная эпоха — началась через 0,01 секунду после Большого взрыва и длится сейчас. В этот промежуток времени образовались все элементарные частицы, атомы, молекулы, звезды и галактики.

Стоит отметить, что важным периодом в развитии Вселенной считается время, когда она стала прозрачной для излучения – через триста восемьдесят тысяч лет после Большого взрыва.

Ссылки[править | править код]

  • Сайт о современной космологии // modcos.com
  • Климушкин Д. Ю. Космология
  • Ned Wright’s Cosmology Tutorial. Архивировано из первоисточника 25 августа 2011.  (англ.)
  • Cosmology and Theology. Архивировано из первоисточника 15 марта 2013.
  • Что измерил WMAP // «Астронет»
  • А. Левин. Миссия «Улисса» завершена, но странствия продолжаются. // «Элементы»
  1. Википедия Космология адрес
  2. Викисловарь — адрес
  3. Викицитатник — адрес
  4. Викиучебник — адрес
  5. Викитека — адрес
  6. Викиновости — адрес
  7. Викиверситет — адрес
  8. Викигид — адрес

Выделить Космология и найти в:

  1. Вокруг света адрес
  2. Академик адрес
  3. Астронет адрес
  4. Элементы адрес
  5. Научная Россия адрес
  6. Кругосвет адрес
  7. Научная Сеть
  8. Традиция — адрес
  9. Циклопедия — адрес
  10. Викизнание — адрес
  1. Bing
  2. Yahoo
  3. Яндекс
  4. Mail.ru
  5. Рамблер
  6. Нигма.РФ
  7. Спутник
  8. Google Scholar
  9. Апорт
  10. Архив Интернета
  11. Научно-популярные фильмы на Яндексе
  12. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов
  • Страница — краткая статья
  • Страница — энциклопедическая статья
  • Разное — на страницах: , , ,

«Мобильность и ударные возможности»: чем уникален новый российский авиадесантируемый бронеавтомобиль «Тайфун-ВДВ»

Так же интересно:

Первобытная эра

Первобытная эпоха Вселенной началась спустя секунду после Большого взрыва. Во время первого, очень маленького отрезка времени, пространства-времени и законов физики, как полагают исследователи, еще не существовало. Этот странный, непостижимый интервал называется планковской эпохой, считается, что она длилась 1044 секунды

Важно принимать во внимание и то, что многие предположения о планковской эпохе, основаны на гибриде общей теории относительности и квантовых теорий, называемой теорией квантовой гравитации

На изображении все пять эпох Вселенной обозначены разными цветами

В первую секунду после Большого взрыва началась инфляция – невероятно быстрое расширение Вселенной. Через несколько минут плазма начала остывать, и субатомные частицы начали образовываться и склеиваться. Через 20 минут после Большого Взрыва – в сверхгорячей, термоядерной Вселенной – начали формироваться атомы. Охлаждение шло быстрыми темпами, пока во вселенной не осталось 75% водорода и 25% гелия, что похоже на то, что происходит сегодня на Солнце. Примерно через 380 000 лет после Большого Взрыва Вселенная остыла настолько, что начали формироваться первые устойчивые атомы и появилось космическое фоновое микроволновое излучение, которое астрономы называют реликтовым излучением.

Определение возраста Земли

Принцип радиоизотопного датирования по углероду. Так определяют возраст ископаемых останков живых существ на Земле.

С середины XVIII века люди начали направленно изучать возраст Земли. Согласно известным физическим моделям ученый из Франции Жорж-Луи Леклерк де Бюффон оценил время, которое потребовалось бы для понижения температуры Земли с момента ее образования до той, которую имеет она сегодня (от 75 до 168 тыс. лет). Как утверждает физическая модель Земли, изначально она представлялась раскаленным шаром. В 1895-м году инженер из Ирландии — Джон Перри пересчитал эту цифру и получил 2–3 млрд лет. В 1896-м году Антуан Беккерель открыл радиоактивность, а спустя 9 лет британский физик Эрнест Резерфорд предложил метод оценки возраста земных пород при помощи радиоактивного распада.

Идея заключалась в том, чтобы определить, какая часть радиоактивного изотопа успела распасться, используя известные периоды полураспада, вычислить возраст образца. Основы радиоизотопного датирования разработал американский радиохимик Бертрам Болтвуд. При помощи данного метода в 1920-х годах было выявлено, что возраст некоторых минералов около 2-х миллиардов лет! Очевидно, возраст Земли не может превышать возраст самого мироздания, поэтому это открытие подвигло ученых найти действенный метод подсчета возраста Вселенной.

Сегодня считается, что с момента зарождения Земли как планеты прошло 4,54 ± 0,05 млрд лет.

Боевой топор: происхождение и исторические особенности

Назначение: Вселенная и Бог

Креационист Джонатан Сарфати описывает Бога как «по определению … нетварного создателя вселенной» (курсив в оригинале). Таким образом, существование Вселенной служит доказательством существования Бога, выраженным теологом Уильямом Лэйном Крейгом как космологический аргумент калам : «Учитывая … что все, что начинает существовать, имеет причину своего существования, мы пришли к выводу, что что у вселенной есть причина своего существования … его причина должна быть беспричинной, вечной, неизменной, вневременной и нематериальной. Более того, это должен быть личный агент, который свободно выбирает для создания следствия во времени. Поэтому … я прихожу к выводу, что разумно верить в существование Бога «

Продемонстрированное существование Бога, в свою очередь, ведет к цели Бога в создании космоса, которым является человечество: «Наблюдения, которые помещают Землю ближе к центру вселенной, согласуются с тем, что Бог сосредоточил внимание на человечестве».

На протяжении многих столетий геоцентрическая модель , описание космоса, в котором Земля считалась центром всех небесных тел, была широко принята множеством различных цивилизаций. Геоцентрическая модель была разработана в первую очередь греческим философом Аристотелем и греко-египетским астрономом Птолемеем . Геоцентрическая модель была оспорена астрономом-священником и математиком Николаем Коперником в его книге De Revolutionibus orbium coelestium, опубликованной в 1543 году. Астрономическая модель Коперника гелиоцентризм Коперника привел к развитию и всеобщему принятию принципа Коперника в большинстве последующих астрономических моделей. Аргументы в пользу принципа Коперника получили дальнейшее развитие в начале 20 века, когда было обнаружено, что Солнечная система находится далеко от центра Млечного Пути.

Тепло белых карликов

Как нам известно, белые карлики, конечный этап жизни большинства звезд, очень долго остывают. Определив основные характеристики такой звезды, можно рассчитать ее изначальную температуру, а также скорость, с которой она остывает. На основе этих данных уже относительно просто высчитывается возраст рассматриваемого белого карлика. Совершивший множество значительных открытий, телескоп «Хаббл» в 2002-м и 2007-м годах обнаружил самых холодных белых карликов. Возраст этих светил оказался 11,5-12 млрд лет. Если прибавить к этим значениям от полумиллиарда до миллиарда лет (возраст звезд, образовавших этих белых карликов), то получится минимальное значение возраста Вселенной.

Белый карлик в представлении художника

Максимальный возможный возраст определяется отсутствием менее разогретых белых карликов и составляет 15 млрд лет. Так как если бы мироздание было старше, то ученым удалось бы обнаружить хотя бы несколько настолько древних объектов.

Сообщить об опечатке

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых «Началах натуральной философии». Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Они распространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m1 и m2, находящимися на расстоянии r, такова:

F=Gm1m2/r2,где G — константа пропорциональности, гравитационная постоянная.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб

Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровый диаметр

Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.

Танто: самый короткий меч самурая

Строение Вселенной

Во все времена люди предпочитали считать Вселенную вечной и неизменной. Эта точка зрения господствовала вплоть до 20-х годов нашего века. В то время считалось, что она ограничена размерами нашей Галактики. Пути могут рождаться и умирать, Галактика все равно остается все той же, как неизменным остается лес, в котором поколение за поколением сменяются деревья.

Настоящий переворот в науке о Вселенной произвели в 1922 — 1924 годах работы ленинградского математика и физика А. Фридмана. Опираясь на только что созданную тогда А. Эйнштейном общую теорию относительности, он математически доказал, что мир — это не нечто застывшее и неизменное. Как единое целое он живет своей динамической жизнью, изменяется во времени, расширяясь или сжимаясь по строго определённым законам.

Структура Вселенной довольно сложна и имеет несколько уровней организации, которые мы можем классифицировать в соответствии с масштабом объектов:

  • Астрономические тела во Вселенной обычно группируются в системы. Звезды нередко образуют пары или входят в состав скоплений, которые содержат десятки, а то и сотни светил. В этом отношении наше Солнце довольно нетипично, так как оно не имеет «двойника»;
  • Следующей ступенью организации являются галактики. Они могут быть спиральными, эллиптическими, линзовидными, неправильными. Ученые пока не до конца понимают, почему галактики обладают разной формой. На этом уровне мы обнаруживаем такие чудеса Вселенной, как черные дыры, темную материю, межзвездный газ, двойные звезды. Кроме звезд, в их состав входит пыль, газ, электромагнитное излучение. В известной Вселенной обнаружено несколько сотен миллиардов галактик.
  • Несколько галактик образуют Местную группу. В нашу, кроме Млечного пути, входит Туманность Треугольника, Туманность Андромеды и еще 31 система. Скопления галактик – самые крупные из известных устойчивых структур Вселенной, их удерживает воедино гравитационная сила и еще какой-то фактор. Ученые подсчитали, что одного лишь притяжения явно недостаточно для поддержания стабильности этих объектов. Научного обоснования данного феномена пока не существует;
  • Следующим уровнем структуры Вселенной являются сверхскопления галактик, каждая из которых содержит десятки, а то и сотни галактик и скоплений. Однако тяготение их уже не удерживает, поэтому они следуют за расширяющейся Вселенной;
  • Последним уровнем организации мироздания являются ячейки или пузыри, стенки которых формируют сверхскопления галактик. Между ними находятся пустотные области, именуемые войдами. Эти структуры Вселенной имеют масштабы около 100 Мпк. На этом ярусе наиболее заметны процессы расширения Вселенной, также с ним связано реликтовое излучение – отголосок Большого взрыва.

Каждый из вселенских объектов — это уникальное формирование с таинственной структурой.

Сегодня мы гораздо лучше понимаем устройство Вселенной, но каждое полученное знание лишь рождает новые вопросы. Исследование атомных частиц в коллайдере, наблюдение за жизнью в дикой природе, высадку межпланетного зонда на астероиде также можно назвать изучением Вселенной, ибо данные объекты входят в ее состав. Человек тоже часть нашей прекрасной звездной Вселенной. Изучая Солнечную систему или далекие галактики, мы больше узнаем о самих себе.

И снова «пуп мироздания»

Может показаться, что раз уж галактики «разбегаются» во все стороны от наблюдателя, находящегося на Земле, сам этот наблюдатель находится в самой середине мироздания. Неужели Земля и в самом деле занимает центральное место в огромной Вселенной?

На самом деле это не так. Исследование характера этого движения и его зависимости от расстояния показало, что галактики «разбегаются» и относительно друг друга.

То есть вся Вселенная в каждой своей точке находится в состоянии непрерывного расширения. Не такого, какое возникает при взрыве, когда осколки из одной точки разлетаются во все стороны. Попробуйте представить, что разлетаются не галактики, а пространство между галактиками. Получилось?

Если нет, то простейшей моделью может служить мыльный пузырь или медленно надуваемый резиновый воздушный шарик, на поверхность которого точками нанесено положение галактик. По мере того, как шарик раздувается, точки все дальше отходят одна от другой.

При этом они не движутся по направлению к чему-нибудь или от чего-нибудь. «Разбегание» происходит исключительно за счет расширения поверхности, на которую точки нанесены.

Представим себе существ, которые живут в мире, где существуют всего два измерения — длина и ширина. Вся их Вселенная — это поверхность.

И если бы они обитали на поверхности надуваемого шарика, то «надувание» и стало бы для них расширением Вселенной. Все расстояния увеличиваются, а центра расширения, который могли бы увидеть «двумерные» наблюдатели, в их Вселенной нет.

Еще одна особенность такого мира: в каком бы направлении ни отправились двухмерные существа, они никогда не смогут достигнуть границы своей Вселенной — ее просто не существует, хотя площадь поверхности шарика имеет конечную величину и измеряется конкретным числом квадратных сантиметров.

Так конечное может стать безграничным и бесконечным.

Эра дегенерации

Следом идет эра дегенерации (вырождения), которая начнется примерно через 1 квинтиллион лет после Большого Взрыва и продлится до 1 дуодециллиона после него. В этой период во Вселенной будут доминировать все видимые сегодня остатки звезд. На самом деле на космических просторах полно тусклых источников света: белые карлики, коричневые карлики и нейтронные звезды. Эти звезды гораздо холоднее и излучают меньше света. Таким образом, в эпоху дегенерации Вселенная будет лишена света в видимом спектре.

Тусклые остатки когда-то ярких звезд будут преобладать во Вселенной в эру дегенерации

В течение этой эры маленькие коричневые карлики будут удерживать большую часть доступного водорода, а черные дыры будут расти, расти и расти, питаясь остатками звезд. Когда водорода вокруг будет не достаточно, Вселенная со временем станет тусклее и холоднее. Затем протоны, существовавшие с самого начала Вселенной, начнут погибать, растворяя материю. В результате во Вселенной в основном останутся субатомные частицы, излучение Хокинга и черные дыры.

Выбор места для посадки

Как и другие сорта ломоносов, клематис жгучий предпочитает легкие, питательные почвы. Необходим хороший дренаж из битого кирпича, гальки, керамзита или речного песка. Растение не переносит застоя влаги в грунте — при переизбытке воды корни и основания стеблей начинают загнивать, и вся лиана может погибнуть. Не стоит размещать клематисы в низине или на заболоченных почвах. Лучше посадить их на небольшой, хорошо освещенной возвышенности. Для отведения грунтовых вод можно прорыть небольшие дренажные канавы.

Идеальная почва должна иметь нейтральную или слабощелочную реакцию. Закисленную землю рекомендуется обработать известью, а затем смешать с песком, торфом и старым перегноем. Для профилактики заболеваний грунт перед высаживание растения нужно полить водным раствором марганцовки. Эта несложная процедура защитит нежные побеги от насекомых-вредителей и различных болезней.

Лучше всего сажать лиану перед стеной дома, около крепкой ограды с арочной опорой, рядом с беседкой или летней кухней. Как и другие сорта клематиса, белый мелкоцветковый не терпит резких порывов ветра, который может сломать хрупкие молодые побеги и повредить соцветия. Участок должен быть хорошо освещен, возможна легкая полутень во второй половине дня. Защищать растение от солнца нужно только в засушливых южных регионах. Не стоит высаживать ломонос под сенью старых деревьев, куда плохо проникают солнечные лучи. Зато лиана с удовольствием оплетет высохший ствол или высокий пень, создавая оригинальную цветущую композицию.

Эксплуатация

Дизайн сайта — Студия Алексея Лобура Разработка сайта — Интернет Квартал

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector