Игоо «кц «оружейный град» выписка егрюл с эцп фнс

Содержание:

Реактивные снаряды

Головные части для реактивных снарядов реактивных частей залпового огня «Град»

Разрезной макет зажигательной головной части 9Н510 для РСЗО «Град», видны зажигательные элементы

Номенклатура боеприпасов
Индекс снаряда Индекс Масса снаряда, кг Длина снаряда, мм Масса , кг Масса /, кг Тип взрывателя Дальность стрельбы, км
Осколочно-фугасные
9М22 9Н51 65,72..66 2870 18,4 6,4 контактный 5..20,4
9М22У 9Н51 66,6..66,78 2870 18,4 6,4 контактный 5..20,4
9М22У-1 9Н51 66,6 2870 18,4 6,4 контактный 5..20,4
9М28Ф 9Н55 56,5 2870 21 6,02 контактный 4..15
9М521 66 2840 21 электронный 15..40
9М522 70 3037 25 4,5 электронный 8..37,5
M-21 OF 66 2750 19,9 контактный до 20,217
Type 81 (осколочно-фугасный) 60 18,3 контактный до 20
Type 81 (увеличенной дальности) 61 2757 неконтактный до 30
Type 90A (осколочно-фугасный) 61 2757 18,3 контактный 12,7..32,7
Rocket Steel Ball Shell 66,8 2870 19,25 6 контактный до 20
Arash 65 2815 18,38 контактный до 21,5
Noor 45 2050 18,35 контактный до 18
Long Range Rocket 72 3200 18 контактный до 29
HE Yarmuk 66 2875 20,4 6 контактный до 20,58
GRAD 66,18 2753 контактный до 20,13
SPALL 66,18 2753 контактный до 20,13
LR 46,25 12 6,4 контактный до 12
EXP-122 70,8 20 контактный до 24,6
JROF 65,8 2881 6,4 контактный
JROF-K 46,3 1932 6,4 контактный до 11
Extended Range Artillery Rocket 65,9 2900 18,4 контактный 10..40
Кассетные
3М16 3М18 56,4 3019 21,6 5×0,14 неконтактный 2,5..13,4
9М28К 57,7 3019 22,8 3×1,85 неконтактный 2,5..13,4
9М43 56,5 2270 21 5×0,8 неконтактный 5..20,1
9М217 70 3037 25 электронный 8..30
9М218 70 3037 25 электронный 8..30
Type 81 (с КОБЭ) 60,5 2927 18,3 неконтактный до 20
Type 81 (с минами) 60 неконтактный 7..15
Type 90A (кассетный) 60,5 2927 19 неконтактный до 32
Fadjr 6 63 2830 32 неконтактный 3,5..6
PLATAN 75,1 3285 неконтактный до 18
JRKK-G AGAT 68 неконтактный 6,5..33
Trnovnik 65,8 2780 14,85 неконтактный 6,5..33
Управляемые
«Угроза-1М» 66 2870 21 5,0 контактный 1,6..42
Зажигательные
9М22С 9Н510 66 2970 17,8 5,94 контактный 1,5..19,89
9М28С 9Н510 53 2318 17,8 5,94 контактный 1,65..15,07
Агитационные
9М28Д 9Н511 52,3 2280 17 0,142 неконтактный 1,65..15,42
Осветительные
9М42 27 1760 неконтактный 1..5
Постановщик помех КВ/УКВ
9М519(-1..7) 66 3025 18,4 неконтактный 4,5..18,3
Химические
9М23 9Н56 66,7 19,3 2,9 неконтактный до 19
9М23М 9Н57 67 19,3 3,1 неконтактный до 20
9Н58 3,075 неконтактный
Учебные
9М28ФУЧ-ТР 56,5 2870 4..15
9Ф839 74,5 3370 до 11
9Ф839-1 74,5 3370 до 11
9Ф839-2 77,8 3378 до 11

Тактико-технические характеристики БМ-21 Град

— Год(ы) производства: 1960 — 1988- Количество выпущенных, шт: более 8500- Шасси: семейства грузовых автомобилей Урал-375Д и Урал-4320— Колёсная формула: 6×6

Габаритные размеры БМ-21 Град

— Длина в походном положении, мм: 7350- Ширина в походном положении, мм: 2400- Высота в походном положении, мм: 3090- Клиренс, мм: 400

Вес БМ-21 Град

— Масса без снарядов и расчета, кг: 10 870- Масса в боевом положении, кг: 13 700

Калибр БМ-21 Град

— 122 мм

Расчёт БМ-21 Град

— 3 человека

— Количество направляющих: 40- Максимальный угол возвышения: 55- Точность (рассеивание), м: При максимальной дальности СКО по дальности составляло 1/130, а боковое — 1/200.- Прицел: Панорама орудийная ПГ-1М- Перевод системы из походного положения в боевое не более, мин: 3,5- Время залпа, с: 20

Дальность стрельбы БМ-21 Град

— минимальная ОФС: 4000 м, КАС: 2500 м, УАС: 1600 м- максимальная ОФС: 40 000 м, КАС: 33 000 м, УАС: 42 000 м

Площадь поражения БМ-21 Град

— 145 000 м²

Двигатель БМ-21 Град

— Тип двигателя: Урал-375- Мощность двигателя, л. с.: 180

Скорость БМ-21 Град

— Максимальная скорость по шоссе, км/ч: 75- Запас хода по шоссе, км: 750

Вы здесь

Особенности

  • Боевая единица БМ 21 способна уничтожить неприятеля, находящегося, как в открытых полевых, так и в защитных условиях. Также поражению подлежит его транспорт и бронетехника. Уничтожению подвергнутся артиллерийские и минометные расчеты, КПП, укрепленные арсеналы с оружием и боеприпасами.
  • Установка способна «обложить» (во всех смысловых понятиях этого слова) противника на площади 145 000 кв. м.
  • Реактивная система «Град», калибра 122 мм, способна вести огонь из 40 направляющих отсеков осколочно-фугасными, кассетными и особоточными снарядами. Рассеивание выстрела составляет 130 метров по прямому направлению, двести метров — по фронтальному.
  • Дальность обстрела зависит от типа снаряда. Максимальный полет достигается при стрельбе «фугасками» — до 40 тыс. км. При стрельбе особоточным зарядом расстояние обстрела на восемь километров меньше.
  • Минимальная дистанция – от 1600 до 4000 км.
  • Время проведения одного залпа — всего двадцать секунд.
  • После окончания стрельб расчету из трех человек, обслуживающих данную БМ, потребуется 3,5 минуты, чтобы привести военную единицу в состояние готовности к дальнейшему перемещению от огневой точки и двигаться со скоростью 75 км/час к дальнейшему месту передислокации на машинах «Урал» 375 Д или 4320, а также ЗиЛ — 131.

Обычный 9М22 и «Лейка»

Испытания показали, насколько мощным оружием является установка «Град». Площадь поражения при полном залпе составляет 1050 кв. м при ударе по живой силе, и 840 кв. м для бронетехники.

Дальнейшее развитие аппаратной части снаряда коснулось взрывателей. «Лейка» может оснащаться ими в двух вариантах (механическом и радиолокационном). Любой бризантный боеприпас становится намного эффективнее, если его подрыв осуществляется на оптимальной высоте, в том числе и снаряд, которым стреляет установка «Град». Площадь поражения осколками и отравляющими веществами при инициации в 30 метрах от поверхности резко возрастает, правда, применение радиолокационного взрывателя уменьшает дальнобойность на 1600 метров.

Летающие лодки: пять самых интересных гидросамолётов всех времён

Часовой в дореволюционной прессе

Военное применение

Первое испытание на практике комплекс «Град» прошел в 1969 г., в ходе конфликта между КНР и СССР. Попытка сломать противника и выбить его силы с острова Даманского танками потерпела неудачу, к тому же китайцы захватили подбитый Т-62, который являлся секретным образцом. Поэтому в ход пошли фугасные снаряды из установки «Град», которые уничтожили врага и тем самым завершили конфликт.

В 1975-1976 гг. применялась боевая машина в Анголе. Операций по окружению в этом конфликте не было, периодически завязывались бои между идущими навстречу колоннами. Так вот особенность «Града» в том, что на месте падения снаряда образуется «мертвый эллипс», поэтому колонна войск, представляющая собой вытянутую шеренгу, в боях в Анголе стала идеальной целью.

В Афганистане вели стрельбу из «Града» прямой наводкой. В Чеченской войне тоже активно использовали боевую машину.

«Град» нашего времени — это около 2500 установок, состоящих на вооружении армии РФ. Боевые машины экспортировались в 70 стран, начиная с 1970 года. Не остались незамеченными БМ-21 в вооруженных конфликтах по всему миру: в Нагорном Карабахе, Южной Осетии, Сомали, Сирии, Ливии и недавно начавшемся противостоянии на востоке Украины.

Боевое применение

Советский Союз

  1. Пограничный конфликт на острове Даманский — первое боевое применение БМ-21 «Град». Применялись советскими войсками.
  2. Афганская война (1979—1989) — применялись советскими войсками.

Конфликты на постсоветском пространстве

  1. Карабахский конфликт — применялись Азербайджаном при обстреле населённых пунктов и инфраструктуры Нагорного Карабаха.
  2. Первая Чеченская война — применялись российскими войсками. 16 боевых машин БМ-21 и около 1000 НУРС были захвачены чеченскими боевиками и использовались против российских войск (в частности, успешно применены в Битве за Долинское).
  3. Вторая Чеченская война — применялись российскими войсками.
  4. Война в Южной Осетии (2008)
  5. Вооружённый конфликт на востоке Украины — используются обеими противоборствующими сторонами (с 2014 г.).

Ближний Восток и Африка

  1. Активно использовались в Анголе, Сомали и других вооружённых конфликтах. Одной из самых заметных страниц участия БМ-21 в Африке стало битва при Кифангондо 10 ноября 1975 года. В ходе боя 4 установки «Град», управляемых кубинскими экипажами, дали два залпа по 2500 солдат ФПЛА, Заира и ЮАР, форсирующих реку. В результате удара было убито 345 боевиков ФПЛА, 50 солдат Заира и неизвестное число юаровцев, наступление было остановлено.
  2. Гражданская война в Ливии.
  3. РСЗО «Град» применялась сирийской армией во время гражданской войны в Сирии, в частности при освобождении Пальмиры.

Навигация

Павел НН

Дополнительные статьи

Боеприпасы для «Града»

В «Граде» применяются боеприпасы, которые состоят из трех основных частей:

  • Боевая составляющая – активная взрывающая часть, которая предназначена для поражения сил противника.
  • Двигатель – построен по реактивному принципу (так же, как и любой космический корабль). В свою очередь, состоит из емкости с горючим и устройств для «зажигания» и отвода горящих газов.
  • Стабилизатор – для лучшего качества и дальности полета.

В середине 50-х дальность боеприпаса весом чуть более 60 кг не превышала пары десятков километров. Для нанесения удара на близкий объект снаряды обвешивали специальными кольцами: чем ближе находился враг, тем больше колец требовалось.

Конвейерное производство боеприпасов было налажено в 1960-е. С тех пор советские инженеры создавали их многочисленные разновидности с различными полезными качествами:

  • Поражение химическими веществами;
  • Создание массивной дымовой завесы, фактически «ослепляющей» противника;
  • Нарушение радиосвязи;
  • Уничтожение противотанковых бомб.

А вот что думают по этому поводу посетители Аэросамары:

Конструкторы и создатели

К началу Великой Отечественной войны у нашей страны уже имелись первые образцы реактивных снарядов и артиллерии и успешный опыт их испытания.

Еще в 1921 году разработчики Н. И. Тихомиров, В. А. Артемьев из газодинамической лаборатории  приступили к разработке реактивных снарядов на бездымном порохе. В 1929-1933 годах Б. С. Петропавловский, при участии Г. Э. Лангемака, Е. С. Петрова, И. Т. Клейменова и др.,  проводили разработку и официальные испытания реактивных снарядов различных калибров — прототипов снарядов для «Катюши». Для их запуска использовали многозарядные авиационные и однозарядные наземные пусковые станки.

Группа разработчиков Реактивного института (РНИИ) под руководством Лангемака, при участии Артемьева, Клейменова, Ю. А. Победоносцева, Л. Э. Шварца и др.,  проводили окончательную отработку реактивных снарядов класса «воздух-воздух» (РС-82) и класса «воздух-земля» (РС-132).

В 1938 году, после успешных войсковых испытаний,  эти снаряды были приняты на вооружение в авиацию. Главное артиллерийское управление поставило перед Реактивным НИИ задачу создать реактивную полевую систему залпового огня, основой которой должен был стать снаряд РС-132. И уже к осени 1939 года И. И. Гвай, В. Н. Галковский, А. П. Павленко, А. С. Попов и др. разработали 132-мм осколочно-фугасный снаряд и многозарядную пусковую установку МУ-2, смонтированную на грузовике.

Летом этого же года авиационные реактивные снаряды, смонтированные на самолетах-истребителях И-16 и И-153, прошли боевое крещение в воздушных боях с японскими захватчиками на реке Халкин-Гол.

Для стрельбы по наземным целям конструкторы предложили многозарядную пусковую установку залпового огня. Она состояла из восьми открытых направляющих рельсов, связанных между собой в единое целое трубчатыми сварными лонжеронами. 16 реактивных 132-мм снарядов, массой 42,5 кг каждый, фиксировались с помощью Т-образных штифтов сверху и снизу направляющих попарно. В конструкции была предусмотрена возможность менять угол возвышения и разворота по азимуту. Наводка на цель производилась через прицел вращением рукояток подъемного и поворотного механизмов.

В качестве шасси для пусковых установок реактивных снарядов – боевых машин залпового огня — был выбран трехтонный автомобиль ЗИС-5 («Захар»). Поначалу короткие направляющие располагались поперек машины МУ-1, но механизированная установка при такой компоновке раскачивалась при стрельбе, что уменьшало ее боеспособность.

В июне 1939 года в кузове ЗИС-5 был смонтирован второй вариант 24-зарядной установки МУ-2, а в августе – третий образец М-132 с пакетом из 8 спаренных рельсовых направляющих для пуска 16 снарядов калибра 132 мм.

В сентябре 1939 года создали реактивную систему МУ-2 на более подходящем для этой цели трехосном грузовике ЗИС-6. В этом варианте удлиненные направляющие устанавливались вдоль автомобиля, задняя часть которого перед стрельбой дополнительно вывешивалась на домкратах. Масса машины с экипажем (5-7 человек) и полным боекомплектом составляла 8,33 т, дальность стрельбы достигала 8470 м. Только за один залп, а это 8-10 с (!) боевая машина выстреливала на позиции врага 16 снарядов, содержащих 78,4 кг высокоэффективного взрывчатого вещества. Трехосный ЗИС-6 обеспечивал МУ-2 вполне удовлетворительную подвижность на местности, позволял ей быстро совершать марш-маневр и смену позиции. Для перевода машины из походного положения в боевое было достаточно 2-3 минут.

1 сентября 1939 года, в день начала 2 мировой войны, «Катюша» сделала первый залп и прошла успешное испытание. Главное артиллерийское управление приняло решение о ее полигонных испытаниях.

В 1940 году, после доработок и испытаний, первая в мире подвижная многозарядная реактивная установка залпового огня М-132 получила армейское обозначение БМ-13-16 (БМ-13) и было принято решение о ее промышленном производстве.

Реактивное НИИ получило заказ на изготовление 5 установок и партии реактивных снарядов для проведения войсковых испытаний. Еще одну пусковую установку БМ-13 заказало артиллерийское управление Военно-Морского флота, чтобы испытать ее в системе береговой обороны.

Что касается реактивного снаряда М-13 (132-мм осколочно-фугасный снаряд), то его производство «на поток» было поставлено достаточно быстро. Одним из основных предприятий по выпуску реактивных снарядов стал московский завод им. Владимира Ильича. А вот с серийным производством пусковых установок дело обстояло сложнее.

Боевое применение

Советский Союз

  1. Пограничный конфликт на острове Даманский — первое боевое применение БМ-21 «Град». Применялись советскими войсками.
  2. Афганская война (1979—1989) — применялись советскими войсками.

Конфликты на постсоветском пространстве

  1. Карабахский конфликт — применялись Азербайджаном при обстреле населённых пунктов и инфраструктуры Нагорного Карабаха.
  2. Первая Чеченская война — применялись российскими войсками. 16 боевых машин БМ-21 и около 1000 НУРС были захвачены чеченскими боевиками и использовались против российских войск (в частности, успешно применены в Битве за Долинское).
  3. Вторая Чеченская война — применялись российскими войсками.
  4. Война в Южной Осетии (2008)
  5. Вооружённый конфликт на востоке Украины — используются обеими противоборствующими сторонами (с 2014 г.).

Ближний Восток и Африка

  1. Активно использовались в Анголе, Сомали и других вооружённых конфликтах. Одной из самых заметных страниц участия БМ-21 в Африке стало битва при Кифангондо 10 ноября 1975 года. В ходе боя 4 установки «Град», управляемых кубинскими экипажами, дали два залпа по 2500 солдат ФПЛА, Заира и ЮАР, форсирующих реку. В результате удара было убито 345 боевиков ФПЛА, 50 солдат Заира и неизвестное число юаровцев, наступление было остановлено.
  2. Гражданская война в Ливии.
  3. РСЗО «Град» применялась сирийской армией во время гражданской войны в Сирии, в частности при освобождении Пальмиры.

Как получить звание ефрейтора в ВС РФ

В российской армии ефрейторами становятся особо дисциплинированные и опытные рядовые солдаты. Также этим званием могут быть отмечены военнослужащие, которые имеют дополнительную квалификацию или важную солдатскую должность. При этом они должны быть старшими в своей должности.

  • Стрелок (пулеметчик, снайпер, гранатометчик);
  • Инструктор санитарной службы в сухопутных войсках;
  • Военнослужащий, работающий со служебными собаками в пограничных войсках;
  • Старший телефонист или радист в войсках связи;
  • Старший водитель или механик-водитель;
  • Старший химик в войсках химзащиты;
  • Наводчик орудия в артиллерийский войсках;
  • Оператор – наводчик в танковых войсках.

Кроме этого, звание часто дают медицинскому персоналу, по той причине, что они изначально обладают знаниями выше, чем у простых рядовых. Солдат, желающий стать ефрейтором, должен показать рвение к службе, отличиться в строевой подготовке, безукоризненно знать и соблюдать устав, не нарушать дисциплину.

Разработка

Задействованные структуры

Разработка систем залпового огня была начата в НИИ-147 по приказу ГКОТ от 24 февраля 1959 г. В соответствии с Постановлением Совета Министров № 578—236 от 30 мая 1960 г. создание боевой и транспортной машин для РСЗО «Град» было поручено СКБ-203. Тем же документом разработка новых сортов пороха марки «РСИ» для твердотопливного заряда возлагалась на НИИ-6. Механические взрыватели для реактивных снарядов были разработаны Научно-исследовательским технологическим институтом в Балашихе. Боевые заряды были разработаны Научно-исследовательским химико-технологическим институтом. Испытания системы проходили на Софринском артиллерийском полигоне. Систему наведения для корабельного варианта РСЗО (С-39) разработали специалисты ЦНИИ-173.

Постановлением СМ СССР № 372-130 от 28 марта 1963 года полевая реактивная система «Град» была принята на вооружение Советской Армии.

Терапия

Описание

Бездымный порох состоит из нитроцеллюлозы (одноосновный), обычно с добавлением до пятидесяти процентов нитроглицерина (двухосновный), и иногда нитроглицерина в сочетании с нитрогуанидином (трёхосновный). Конечный продукт гранулируется в сферические частицы или прессуется в цилиндры или хлопья при помощи растворителей типа эфира. Также дополнительной составляющей бездымного пороха могут быть стабилизаторы и баллистические модификаторы.

Двухосновные порохи обычно используются в изготовлении патронов для стрелкового и охотничьего оружия, в то время как трёхосновные более широко применяются в артиллерии и двигателях ракет небольшого калибра.

Причина бездымности этих порохов состоит в том, что продукты окисления их ингредиентов в основном газообразны, по сравнению с чёрным порохом, выделяющим при сгорании до 55 % твердых веществ (карбонат калия, сульфат калия и пр.).

Бездымный порох горит только по поверхности гранул, хлопьев или цилиндров — для краткости, гранул. Бóльшие гранулы сгорают медленнее и скорость их сгорания также контролируется специальным покрытием, мешающим горению, основная функция которого — регулировать более-менее постоянное давление на вращающуюся пулю или снаряд, ещё не покинувшие ствол орудия, что позволяет им достигать максимальной скорости.

Самые большие гранулы в пушечном порохе. Они представляют собой цилиндр, достигающий размера пальца руки, в котором проделаны семь отверстий (одно по оси симметрии, а остальные шесть — расположены по кругу центрального поперечного сечения). Эти отверстия стабилизируют процесс горения благодаря тому, что пока внешняя поверхность, сгорая, уменьшает внешнюю площадь горения, сгорает и внутренняя поверхность, увеличивая внутреннюю площадь горения. Изнутри горение в грануле происходит быстрее, таким образом позволяя поддерживать давление в стволе постоянным, при увеличении в нём свободного пространства из-за движения пули/снаряда вперёд.

Быстрогорящие пистолетные пороха делаются таким образом, чтобы поверхность их гранул была максимальной, как у хлопьев или плоских дисков.

Сушат порох в основном в вакууме. При сушке растворители конденсируются и могут быть снова использованы в процессе изготовления. Гранулы также покрываются графитом, с целью избежать их возгорания от искр статического электричества.

Что сильнее: смерч или торнадо?

Смерч, торнадо над морем Торнадо и смерчи представляют собой одно и то же явление. Просто атмосферные вихри называют по-разному, в зависимости от регионов. Наиболее сильные вихри происходят на территории Северной Америки. В последний раз сильнейшее бедствие произошло в 1999 году в штате Техас. Тогда пострадало множество объектов, мощные потоки воздуха сносили все на своем пути, они передвигались на скорости 500 км/час.

Касаемо размеров, самым крупным был признан торнадо, обрушившийся на штат Оклахома в 2013. Тогда он двигался крайне быстро, практически на скорости в 490 км/час. Охват смерча был велик – примерно 4,2 км.

4.5. Ходовая часть

Конструкция

Пусковая установка монтируется на доработанном грузовом шасси, обычно Урал-375. Это полноприводная шестиколёсная машина с двигателем мощностью 180 л.с. и ручной коробкой передач. Благодаря полному приводу, шасси обладает отличной проходимостью, способно преодолевать брод глубиной до 1,5 метров без подготовки.

В зависимости от модификации, используются автомобили серии Урал-375, Урал-4320, в системе «Град-1» применяется ЗИЛ-131, а белорусская «Град-1А» – МАЗ-6317. Скорость достигает от 75 до 90 км/час, масса от 10 до 17 тонн, запас хода от 750 до 1200 км.

Пусковая установка состоит из 40 трубчатых направляющих, расположенных по 10 в ряд и установлена на поворотном основании, приводимом в движении электроприводом либо вручную. Возможно наведение по вертикали от 0° до +55° и по горизонтали от 102° влево до 70° вправо.

Для того, чтобы избежать чрезмерного раскачивания пусковой установки во время стрельбы, порядок пуска снарядов рассчитан и строго определён.

Для перезарядки используется транспортно-заряжающая машина на базе ЗИЛ-131. Он несёт на себе 2 яруса, вмещающих по 20 снарядов каждый.

Исторические сведения

Идея разработки комплекса залпового огня с дальностью полета более 20 км принадлежит советским инженерам и свое начало берет с середины 50-х годов прошлого века. Военная установка «Град» разрабатывалась для замены системы БМ-14. Идея заключалась в том, чтобы на шасси грузового автомобиля, способного с легкостью преодолевать труднопроходимую местность, разместить маневренную артиллерийскую часть, начиненную реактивными снарядами.

В 1957 году Главное ракетно-артиллерийское управление (ГРАУ) дало техническое задание свердловскому конструкторскому бюро разработать боевую машину. Необходимо было спроектировать машину, способную разместить 30 направляющих для реактивных глубинных снарядов. Цель была достигнута путем доработки ракеты – созданием изогнутых по цилиндрической поверхности складных хвостовых стабилизаторов.

Разработчиком снаряда был выбран НИИ-147, который предложил такую технологию изготовления корпуса, как метод горячей вытяжки. Под шефством А. Н. Ганичева и при поддержке Госкомитета по оборонной технике были начаты работы по созданию реактивного снаряда. Разработку боевой части снаряда поручили ГСКБ-47, а порохового заряда двигателя – НИИ-6. НИИ-147 спроектировал снаряд со смешанной стабилизацией: хвостовое оперение и вращение.

Управление огнем

Система управления огнем позволяет совершать выстрелы залпом и в одиночку. Пиротехнический запал двигателя реактивного снаряда происходит от датчика импульсов, которым можно управлять в кабине БМ-21 через токораспределитель или через мобильный пульт на расстоянии до 50 м.

Цикл полного залпа длительностью 20 секунд имеет установка «Град». Характеристики, касающиеся температурного режима, следующие: бесперебойная работа гарантирована при температуре от -40 °С до +50 °С.

Группа управляющих установкой состоит из командира и 5 помощников: наводчика; установщика взрывателя; радиотелефониста/заряжающего; водителя боевой машины/заряжающего и водителя транспортной машины/заряжающего.

Транспортная машина предназначена для транспортировки снарядов, на ее борту закреплены стационарные стеллажи.

Тактико-технические характеристики

5.1 Размеры

  • Длина в походном положении, см: 735
  • Ширина в походном положении, см: 240
  • Высота в походном положении, см: 309
  • Клиренс, см: 40.

5.2 Вооружение

  • Калибр, мм: 122
  • Количество направляющих: 40
  • Дальность стрельбы мин., км: КАС: 2,5; ОФС: 4; УАС: 1,6
  • Дальность стрельбы макс., км: КАС: 33; ОФС: 40; УАС: 42
  • Площадь поражения, км²: 145
  • Максимальный угол возвышения, град: 55
  • Точность (рассеивание), м: при максимальной дальности СКО по дальности равнялось  1/130, боковое — 1/200.
  • Прицел: орудийная панорама ПГ-1М
  • Перевод системы из походного положения в боевое не свыше чем, с.: 210
  • Время залпа, с: 20.

5.3 Подвижность

  • Тип двигателя: Урал-375
  • Мощность двигателя, л.с.: 180
  • Максимальная скорость по шоссе, км/ч: 75
  • Запас хода по шоссе, км: 750
  • Колёсная формула: 6×6.

5.4 Остальные параметры

  • Классификация: реактивная система залпового огня
  • Шасси: грузовиков Урал-4320 и Урал-375Д
  • Масса без снарядов и расчета, т: 10,87
  • Масса в боевом положении, т: 13,7
  • Экипаж, чел.: 3

Механизм наведения

Разумеется, главными в этой системе залпового огня были показатели, подтвержденные испытательными стрельбами, а не ходовые качества. Из Москвы до Владивостока эти СЗО своим ходом гнать никто не собирался, для доставки есть и другие средства, а безаварийный пробег трех с лишним тысяч километров красноречиво говорил о том, что шасси, в общем и целом, сделаны не так уж плохо, хотя и нуждаются в некотором усилении. Главным же агрегатом машины является боевая часть, состоящая из сорока (по 10 в ряд) труб-направляющих, длиной в 3 метра и с внутренним диаметром 122,4 мм. Дальность стрельбы установки «Град» зависит от наклона блока стволов относительно горизонтальной плоскости, угол которого задается подъемным устройством. Находится этот узел в центре основания и по своему принципу представляет механический редуктор, включающий две кинематические пары: зубчатый вал и шестерню для задания направления и червячную передачу, с помощью которой создается нужное возвышение. Приводится в движение механизм наведения с помощью электропривода или вручную.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector