Ркг-3

Содержание:

Примечания

  1. Учебное пособие по начальной военной подготовке. — Москва: ДОСААФ, 1971. — С. 173.
  2. 12 * Ручная кумулятивная граната РКГ-3Е. Руководство. — Москва: Военное издательство Министерства Обороны Союза ССР, 1959. (В этой же книге описана и граната РКГ-3ЕМ).
  3. Type 3, Antitank
  4. RKG-3 Antitank Hand Grenade // North Korea Country Handbook MCIA-2630-NK-016-97. U.S. Department of Defense, May 1997. page A-103
  5. «Ручна кумулятивна граната РКГ-3ЕМ — 47 шт. » Розпорядження Кабінету міністрів України № 999-р від 21 листопада 2013 р. «Про затвердження додаткового переліку боєприпасів, що підлягають утилізації»

Карабин Сайга TG2 фото: как выглядит

Черненко Константин Устинович (1911–1985)

Навигация

Реактивные гранаты[ | ]

ПГ-7ВЛ «Луч» с гранатой ПГ-7Л Для увеличения дальности полёта были созданы реактивные гранаты. В них ускоряющий заряд сгорал постепенно, разгоняя гранату.

Противотанковые кумулятивные гранаты, выстреливаемые из гранатомётов, имеют боевую дальность до 400 метров и способны пробивать бетон, кирпичную кладку и другие преграды.

Сравнение популярных моделей

Оружие Диаметр Начальная скорость Боеголовка Бронепробиваемость (оценка) Дальнобойность Оптический прицел кратностью
M67 90 мм 213  м / сек 3.06 кг (Кумулятивный боеприпас) 350 мм 400 м 3X
M2 Carl Gustaf 84 мм 310  м / сек 1.70 кг (Кумулятивный боеприпас) 400 мм 450 м 2X
LRAC F1 89 мм 300  м/сек 2.20 кг (Кумулятивный боеприпас) 400 мм 600 м Нет ист.
РПГ-7 85 мм 300  м/сек 2.25 кг (Кумулятивный боеприпас) 320 мм 500 м 2.5X
B-300 82 мм 280  м/сек 3.00 кг (Кумулятивный боеприпас) 400 мм 400 м Нет ист.

Главные преимущества

Тактические особенности боевого применения

РКГ-3 — кумулятивная граната ударного действия. При попадании в цель происходит мгновенный взрыв, и кумулятивная струя пробивает броню толщиной до 150 мм (при подходе гранаты к цели под углом 30° от нормали. При уменьшении этого угла бронепробиваемость увеличивается, а при увеличении угла — уменьшается).

В полёте граната стабилизируется и летит донной частью вперёд, для этого во время полёта раскрывается матерчатый стабилизатор в форме конуса. Средняя дальность броска составляет 18-20 метров. Если солдат находился в окопе и танк шёл на него, рекомендовалось лечь на дно окопа, пропустить танк над собой и метнуть гранату в корму.

About

«Папа, это чегепуга?»: Diskushandgranate М.1915

Знаменитая немецкаяколотуха» Stielhandgranate, принятая на вооружение в 1915 году и прошедшая с небольшими изменениями две мировые войны и множество локальных конфликтов, при всей надёжности имела один серьёзный минус: большую длительность горения пиротехнического замедлителя. К тому же она была довольно габаритной. Поэтому параллельно с ней разрабатывались и другие модели. В том же 1915-м фирма Dynamit AG предложила образец со взрывателем мгновенного действия, который срабатывал при ударе о препятствие. Правда, выполнен он был очень специфическим образом…

Diskushandgranate М.1915 крупным планом и в ящике

Дисковая» иличечевичная» граната по виду больше всего напоминала черепаху. Половинкипанциря» с внутренней насечкой отливались из чугуна. Торчащиелапки» — это подвижные трубки с воспламеняющимся составом. При падении гранаты на ребро трубки вдвигались внутрь и натыкались на многолучевой ударник, после чего следовал взрыв. Изделие получилось простое и дешёвое, но без минусов не обошлось.

Diskushandgranate М.1915 в разобранном виде, фото времён Первой мировой

Из-за характерной формы корпуса образование и разлёт осколков были очень неравномерными. Кидать новинку оказалось неудобно: за торчащие части лучше не хвататься(ну их к чёрту, рванёт ещё), а кластьтортиллу» брюхом на ладошку несподручно, улетит недалеко. К тому же корпус гладкий и скользкий, а в окопах сыро, грязно — выскользнет ещё. При падении в глубокий снег, воду или топкую грязь надёжность срабатывания резко падала.

А есличерепаха» шлёпнется на пузо? Да ничего не будет. Устройства самоликвидации в обиход войдут ещё не скоро, так что лежать граната будет долго — до тех пор, пока не напорется на неё беспечный военнослужащий и не даст ей весёлого пенделя сапогом.

В войсках быстро ознакомились с минусами конструкции и высказали своё негодующеепфуй!». Так что жизнь Diskushandgranate оказалось недолгой — её производство очень быстро свернули.

Германская же армия осталась верна уже упоминавшейсяколотушке». Самая известная модификация — М24 — состояла на вооружении несколько десятилетий. Кстати, последними от неё отказались запасливые швейцарцы только в 90-е годы.

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Немецкие гранатометы «Панцершрек» и «Офенрор»: история создания, описание и характеристики

Учебно-имитационные гранаты

Внешние медиафайлы
Разрезные гранаты

Учебно-имитационные гранаты не только копировали форму и вес, но и имитировали взрыв гранат звуковым и дымовым эффектом с помощью небольшого заряда дымного пороха. Внешне они отличались наличием отверстия в днище корпуса, через которое при имитации взрыва выходили пороховые газы. В отличие от разрезных и учебно-тренировочных гранат, которые назывались так же, как и их боевые прототипы, только с добавлением слова «разрезная» или «учебно-тренировочная», учебно-имитационные гранаты имели другие названия: имитирующая РГК-3 имела название УПГ-8 (учебная противотанковая граната). Имитационный запал состоит из ударного механизма и имитационной части, между которыми проложена переходная втулка. Ударный механизм устроен так же, как у запала УЗРГМ, только ударник у него немного длиннее. Имитационная часть также состоит из тех же частей, что и у УЗРГМ, но вместо капсуля-детонатора она имеет специальную гильзу с зарядом дымного пороха. При повторном использовании гранаты меняются только ударник и имитационная часть запала. Остальные части запала и корпус гранаты используются многократно. Учебно-имитационные гранаты позволяют отрабатывать навыки метания.

Сорбция сульфат-ионов на гидроксидах железа.

Гидроксид железа способен сорбировать сульфат-ионы в зависимости от рН. Подтверждено, что способность к поглощению сульфат-ионов гидроксидом железа проявляется в только кислой среде и в щелочных средах отсутствует.

Наибольшая сорбируемость сульфат-ионов наблюдается при рН 2, 9 ÷ 3,4, увеличение концентрации в растворе SO42- снижает степень его поглощения гидроксидом железа, как и увеличение рН раствора.

Хотя образование ярозитных форм гидроксосоединений железа протекает при более низких рН (1,95 ÷ 2,4) и при повышенных температурах до 100°, вероятность образования основных сульфатных комплексов при сорбции SO42- гелем гидроксида железа (III) исключать нельзя, так как сульфат-ион гелем тоже удерживается достаточно прочно, даже при подщелачивании и отмывке водой.

Состав этих комплексов, возможно, отличается от FeOHSO4 и Fe(OH)3 и (Me, H2O), Fe3(OH)6(SO4)2, но генетическая связь с указанными соединениями очевидна, так как координационная связь иона Fe3+ с сульфат-ионом довольно высока.

Данная статья является интеллектуальной собственностью ООО «НПП Электрохимия» Любое копирование без прямой ссылки на сайт www.zctc.ru преследуется по закону. Текст статьи обработан сервисом Яндекс «Оригинальные тексты»

Устройство и принцип действия

Ручные осколочные гранаты предназначены для поражения и уничтожения живой силы и техники противника. Устройство у всех схожее, разница состоит лишь в весе и расстоянии разлета осколков при разрыве. Запал, время его горения, расстояние броска — примерно одинаковое.

Корпус оборонительных гранат массивней и толще. Для более эффективного разрыва на него наносится вертикальная и горизонтальная насечка. Боевые свойства и назначение обуславливают материал корпуса, состав разрывного заряда.

Схематичное устройство ручных осколочных гранат:

  • корпус (в современных боеприпасах двухслойный/многослойный, в некоторых моделях внутрь помещается насеченная металлическая лента или стальные шарики), служащий для помещения составных частей, и для образования осколков. Изготовляется из металлических сплавов, либо других материалов в зависимости от назначения;
  • разрывной заряд (взрывчатое вещество: тротил, мелинит, гексоген);
  • запал — самая сложная часть, состоящая из предохранителя (чека), спускового рычага, ударника и детонирующего заряда с капсюлем. Время срабатывания большинства современных запалов составляет от 3,5 до 4 секунд.

Сейчас преимущественно используются запалы двух типов:

  1. унифицированный (в частности УЗРГМ, ударно-спусковой механизм после освобождения предохранительной скобы, обеспечивает накалыванием ударником капсюля-замедлителя по выгоранию которого происходит подрыв заряда);
  2. ударно-дистанционного действия (снабжен дополнительными предохранителями, капсюлями, инерционным грузом, который активирует детонатор при столкновении с преградой. Безопасность при случайном падении гранаты обеспечивает механизм дальнего взведения). Необходимо отметить и существование других типов запалов, это например тёрочный запал, массово использованный при производстве немецких «колотушек» М24, в период Второй Мировой войны.

Работа частей и механизмов гранаты

Перед метанием гранаты. Достать гранату из сумки, свинтить рукоятку, вставить в трубку корпуса запал и навинтить до отказа рукоятку. Ударник удерживается малыми шариками в корпусе ударника, сжимая боевую пружину. Корпус ударника от продвижения вперед удерживается большими шариками в трубке с фланцем. Откидная планка предохранительной чекой соединена с подвижной муфтой рукоятки и отогнутым концом — с откидным колпаком, ее пружинный конец находится в пазу подвижной муфты. Концы предохранительной чеки разведены и прочно удерживают ее на рукоятке.

При метании гранаты. Граната для метания берется за рукоятку в руку, предохранительная чека выдергивается, и граната бросается в цель. При выдергивании чеки подвижная муфта и откидная планка расцепляются. При взмахе для броска корпус гранаты вместе с подвижной муфтой отходит от корпуса рукоятки, сжимая пружину подвижной муфты и освобождая шарик и пружинный конец откидной планки (рис. 16).

Рис. 16. Положение частей и механизмов при взмахе гранатой для броска:

1 — корпус рукоятки; 2 — подвижная муфта; 3 —пружина подвижной муфты; 4 — откидная планка; 5 и б — пружинный и отогнутый концы откидной планки; 7 —откидной колпак с планкой

В момент отделения гранаты от руки корпус рукоятки под действием пружины подвижной муфты продвигается к корпусу гранаты и занимает прежнее (до метания) положение. Откидной колпак под действием своей пружины отходит назад от рукоятки, поворачивает откидную планку и, освободившись от зацепления с ней, отделяется от рукоятки (рис. 17).

Рис. 17. Граната во время полета:

1 — пружина стабилизатора; 2 — проволочные перья; 3 — матерчатый конус; 4 — откидной колпак с планкой

Пружина стабилизатора выталкивает из рукоятки стабилизатор, который под действием проволочных перьев и силы сопротивления воздуха раскрывается (рис. 17). Стержень под действием пружины выходит из ударника (сработал третий предохранитель) и

освобождает большие шарики, а значит, и корпус ударника. Продвижению вперед инерционного грузика и корпуса ударника препятствуют контрпредохранительная пружина 24 и трение. Малые шарики, находясь в стенках корпуса ударника и ударника, не позволяют продвинуться ударнику вперед.

При встрече с целью (преградой). В момент удара гранаты дном корпуса или бо- . ковой частью о цель (преграду) контрпредохранительная пружина под действием инерционного грузика сжимается, а корпус ударника продвигается вперед до тех пор, пока малые шарики не войдут в канавку трубки с фланцем и не освободят ударник. Ударник под действием боевой пружины резко продвигается вперед, накалывает капсюль-детонатор запала, он воспламеняется и вызывает мгновенный взрыв гранаты.

Назначение, устройство и работа частей и механизмов более поздних образцов ручной кумулятивной гранаты РКГ-ЗЕ и РКГ-ЗЕМ аналогичны гранате РКГ-3.

Тактические особенности боевого применения

РКГ-3 — кумулятивная граната ударного действия. При попадании в цель происходит мгновенный взрыв, и кумулятивная струя пробивает броню толщиной до 150 мм (при подходе гранаты к цели под углом 30° от нормали. При уменьшении этого угла бронепробиваемость увеличивается, а при увеличении угла — уменьшается).

В полёте граната стабилизируется и летит донной частью вперёд, для этого во время полёта раскрывается матерчатый стабилизатор в форме конуса. Средняя дальность броска составляет 18-20 метров. Если солдат находился в окопе и танк шёл на него, рекомендовалось лечь на дно окопа, пропустить танк над собой и метнуть гранату в корму.

Защита

Противокумулятивный экран появился как ответ на создание кумулятивного боеприпаса перед Второй мировой войной в Германии. Во время войны советские танкисты приваривали к броне специальные сетчатые экраны фабричного производства (ошибочно интерпретированные на Западе как панцирные кровати), тонкие листы железа и жести для защиты от немецкого носимого противотанкового оружия с кумулятивным боеприпасом типа «Фаустпатрон», «Панцерфауст» и т. п. Широкого применения противокумулятивные экраны тогда не нашли, так как по результатам советских испытаний 1945 года показали себя неэффективными против последних версий фаустпатронов (с типичных дистанций городского боя броня все равно пробивалась, хотя диаметр пробоины и уменьшался). Корпуса немецких танков «Тигр» покрывались, для предотвращения прикрепления к ним ручных магнитных мин, специальным составом циммеритом. Те же меры были приняты в отношении немецких танков «Пантера» и САУ последнего периода Второй мировой войны. Однако такие мины использовались лишь в немецкой армии и не использовались её противниками, и в то же время нанесение такого покрытия было делом хлопотным и трудоемким, так что в 1944 г., через год применения, от него отказались. Ещё во время ВОВ было замечено, что поражение танка зачастую меньше, если поражающий танк снаряд попадает в навешенные поверх брони танка взрывчатые вещества. Поначалу такие наблюдения считались хотя и достойными доверия, но практически неприменимыми, поскольку в ряде случаев страдал не только противотанковый снаряд, но и сама броня. Однако сама тема не была закрыта, и первые образцы динамической защиты были разработаны в СССР в конце 1950-х годов НИИ Стали под руководством академика Богдана Войцеховского (Ленинская премия 1965 года); в середине 60-х годов аналогичные разработки провели в ФРГ инженер-исследователь Манфред Хельд (Manfred Held

) — концерн MBB-Schrobenhausen. По ряду причин, таких, как достаточный уровень защиты советской БТВТ к моменту создания динамической защиты, её производство не начиналось до середины 80-х годов. Впервые динамическая защита, созданная на основе германского опыта, была установлена на танках Израиля во время Ливанской войны 1982 г.

К-19 (2002)

Тактические особенности боевого применения

РКГ-3 — кумулятивная граната ударного действия. При попадании в цель происходит мгновенный взрыв, и кумулятивная струя пробивает броню толщиной до 150 мм (при подходе гранаты к цели под углом 30° от нормали. При уменьшении этого угла бронепробиваемость увеличивается, а при увеличении угла — уменьшается).

В полёте граната стабилизируется и летит донной частью вперёд, для этого во время полёта раскрывается матерчатый стабилизатор в форме конуса. Средняя дальность броска составляет 18-20 метров. Если солдат находился в окопе и танк шёл на него, рекомендовалось лечь на дно окопа, пропустить танк над собой и метнуть гранату в корму.

Права и обязанности

Описание

Ручная противотанковая граната, в больших количествах продающаяся на оживлённых станциях петербургского метро. Предназначена для подрыва укреплений и баррикад, расчистки завалов в туннелях, а также в бою против большой стаи мутантов.

Экземпляр, в июне 2033 года купленный Уберфюрером перед отправкой к АЭС, оказывается нерабочим ввиду отсутствия цилиндра с запалом, отчего Убер использует РКГ в качестве дубинки, насмерть забивая собаку Павлова. Именно с этой же гранатой скинхед впоследствии идёт в лобовую и фатальную атаку на массивного Блокадника.

Смятую «эркагэшку» рядом с заваленным обломками телом Уберфюрера спустя десять минут после сражения обнаруживает находящаяся неподалёку группа диггеров Звёздной коммуны.

Вахтовые автобусы на шасси «Садко»

ГАЗ-33081-1091 и автомобиль технической поддержки ГАЗ-33086 «Земляк»

Автоцистерна пожарная АЦ-3,0-40 на шасси ГАЗ-33086

  • КАвЗ-39766 — автобус-вездеход с использованием 19-местного кузова автобуса малого класса КАвЗ-3976. Модификации: 397660 — с карбюраторным двигателем ЗМЗ-513; 397663 — с дизелем ММЗ Д-245.7. Производился в 2003—2005 гг.
  • СемАР-3257 — грузопассажирский 12-местный автобус-вездеход с карбюраторным двигателем ЗМЗ-513 и кузовом от автобуса малого класса СемАР-3280. Производился ЗАО НПП «Семар» в 2001—2006 гг.
  • ГАЗ-330811-10 «Вепрь» — автомобиль специального назначения на укороченной базе «Садко» с цельнометаллическим трёх- или пятидверным кузовом.

Конструкция

Граната состоит из корпуса с разрывным зарядом, рукоятки и запала. Причём ударный механизм и предохранители находятся не в запале, а в рукоятке. Фактически запал — это только капсюль-детонатор. Перед метанием нужно открутить рукоятку от корпуса, вставить запал в корпус, и затем прикрутить рукоятку обратно.

Для безопасности метания граната имеет 4 предохранителя.

Первый — это обычная чека, которая выдёргивается за кольцо перед метанием гранаты.

Если после выдёргивания чеки боец уронил гранату на землю, то взрыва всё равно не произойдёт, поскольку второй предохранитель ещё не выключен. Когда боец перед броском замахивается, держа гранату за рукоятку, то корпус гранаты под действием инерционных сил стремится оторваться от рукоятки; эта инерционная сила сжимает пружинку; после броска пружинка разжимается и освобождает второй предохранитель и, кроме того, освобождает механизм раскрытия стабилизатора.

Если боец в горячке боя не рассчитал время и метнул гранату, когда танк уже (или ещё) находится близко от него, то взрыва всё равно не произойдёт. Чтобы купол стабилизатора раскрылся, граната должна пролететь по воздуху хотя бы метр-полтора, и только раскрывшись, стабилизатор освобождает третий предохранитель.

Если на пути гранаты окажется высокая трава или иное гибкое препятствие, которое замедлит полёт гранаты, например маскировочная сеть, то граната, столкнувшись с ними, не взорвётся: ударник удерживается четвёртым предохранителем на ещё одной пружинке. И только когда граната столкнётся с действительно твёрдой преградой, способной резко остановить её полёт, тяжёлый инерционный грузик преодолеет сопротивление пружинки и отключит четвёртый предохранитель. Тогда ударник под действием боевой пружины резко продвигается вперёд и накалывает капсюль-детонатор.

Учебно-имитационные гранаты

Внешние медиафайлы
Разрезные гранаты

Учебно-имитационные гранаты не только копировали форму и вес, но и имитировали взрыв гранат звуковым и дымовым эффектом с помощью небольшого заряда дымного пороха. Внешне они отличались наличием отверстия в днище корпуса, через которое при имитации взрыва выходили пороховые газы. В отличие от разрезных и учебно-тренировочных гранат, которые назывались так же, как и их боевые прототипы, только с добавлением слова «разрезная» или «учебно-тренировочная», учебно-имитационные гранаты имели другие названия: имитирующая РГК-3 имела название УПГ-8 (учебная противотанковая граната). Имитационный запал состоит из ударного механизма и имитационной части, между которыми проложена переходная втулка. Ударный механизм устроен так же, как у запала УЗРГМ, только ударник у него немного длиннее. Имитационная часть также состоит из тех же частей, что и у УЗРГМ, но вместо капсуля-детонатора она имеет специальную гильзу с зарядом дымного пороха. При повторном использовании гранаты меняются только ударник и имитационная часть запала. Остальные части запала и корпус гранаты используются многократно. Учебно-имитационные гранаты позволяют отрабатывать навыки метания.

Разновидности ПБ снарядов

В настоящее время разработано несколько эффективных конструкций подкалиберных снарядов, которые используются вооруженными силами различных стран. В частности, речь идет о следующем:

  • С неотделяющимся поддоном. Весь путь до цели снаряд проходит как единое целое. В пробитии же участвует только сердечник. Такое решение не получило достаточного распространения по причине повышенного аэродинамического сопротивления. В результате чего показатель бронепробития и точности с расстоянием до цели существенно падает.
  • С неотделяющимся поддоном для конического орудия. Суть такого решения в том, что при прохождении по коническому стволу поддон сминается. Это позволяет уменьшить аэродинамическое сопротивление.
  • Подкалиберный снаряд с отделяющимся поддоном. Суть в том, что поддон срывается силами воздуха или же центробежными силами (при нарезном орудии). Это позволяет существенно снизить сопротивление воздуха в полете.

Для танка «Т-34» самые неудачные карты

Конструкция

Граната состоит из корпуса с разрывным зарядом, рукоятки и запала. Причём ударный механизм и предохранители находятся не в запале, а в рукоятке. Фактически запал — это только капсюль-детонатор. Перед метанием нужно открутить рукоятку от корпуса, вставить запал в корпус, и затем прикрутить рукоятку обратно.

Для безопасности метания граната имеет 4 предохранителя.

Первый — это обычная чека, которая выдёргивается за кольцо перед метанием гранаты.

Если после выдёргивания чеки боец уронил гранату на землю, то взрыва всё равно не произойдёт, поскольку второй предохранитель ещё не выключен. Когда боец перед броском замахивается, держа гранату за рукоятку, то корпус гранаты под действием инерционных сил стремится оторваться от рукоятки; эта инерционная сила сжимает пружинку; после броска пружинка разжимается и освобождает второй предохранитель и, кроме того, освобождает механизм раскрытия стабилизатора.

Если боец в горячке боя не рассчитал время и метнул гранату, когда танк уже (или ещё) находится близко от него, то взрыва всё равно не произойдёт. Чтобы купол стабилизатора раскрылся, граната должна пролететь по воздуху хотя бы метр-полтора, и только раскрывшись, стабилизатор освобождает третий предохранитель.

Если на пути гранаты окажется высокая трава или иное гибкое препятствие, которое замедлит полёт гранаты, например маскировочная сеть, то граната, столкнувшись с ними, не взорвётся: ударник удерживается четвёртым предохранителем на ещё одной пружинке. И только когда граната столкнётся с действительно твёрдой преградой, способной резко остановить её полёт, тяжёлый инерционный грузик преодолеет сопротивление пружинки и отключит четвёртый предохранитель. Тогда ударник под действием боевой пружины резко продвигается вперёд и накалывает капсюль-детонатор.

Тактические особенности боевого применения

РКГ-3 — кумулятивная граната ударного действия. При попадании в цель происходит детонация заряда взрывчатого вещества и струя из металлических частиц облицовки его воронки пробивает броню толщиной до 150 мм (при подходе гранаты к цели под углом 30° от нормали. При уменьшении этого угла бронепробиваемость увеличивается ещё больше; а при увеличении угла — уменьшается).

В полёте граната стабилизируется и летит донной частью вперёд, для этого во время полёта раскрывается матерчатый стабилизатор в форме конуса. Средняя дальность броска составляет 18-20 метров. Если солдат в окопе и танк идёт на него, рекомендуется лечь на дно окопа, пропустить танк над собой и метнуть гранату в корму.

Численный состав

Машина Полиции ФБР

По состоянию на 22 августа 2013 года в ФБР работают 35 902 сотрудника. Из них — 13 785 «специальных агентов» (то есть кадрового оперативного состава) и 22 117 человек обслуживающего персонала: аналитики, лингвисты, учёные, ИТ-специалисты и другие. Они выполняют профессиональные, административные, технические, канцелярские, ремесленные, торговые и поддерживающие функции. Около 9 800 сотрудников определены для штаб-квартиры ФБР (FBIHQ) и примерно 18 000 сотрудников на местах.

ФБР состоит из нескольких отделов, самый крупный из них — Криминальный следственный отдел (Criminal Investigative Division, CID) — имеет собственный ядерный реактор для нейтронного анализа[источник не указан 2699 дней]. Другие отделы имеют исключительно административные функции, относящиеся к организации внутренних вопросов: кадровые, финансовые, управленческие и так далее.

Смертельный плевок

Однако уже в начале Второй мировой в поражающих свойствах боеприпасов произошла революция: появились кумулятивные снаряды. В 1941 году Hohlladungsgeschoss («снаряд с выемкой в заряде») начали применять немецкие артиллеристы, а в 1942-м и в СССР был принят на вооружение 76-мм снаряд БП-350А, разработанный после изучения трофейных образцов. Так были устроены и знаменитые фауст-патроны. Возникла проблема, не разрешимая традиционными способами из-за неприемлемого увеличения массы танка.

Элементы динамической защиты (ЭДЗ) Представляют собой «сэндвичи» из двух металлических пластин и взрывчатого вещества. ЭДЗ помещены в контейнеры, крышки которых защищают их от внешних воздействий и одновременно представляют собой метаемые элементы.

В головной части кумулятивного боеприпаса сделана коническая выемка в виде облицованной тонким слоем металла воронки (раструбом вперед). Детонация взрывчатого вещества начинается со стороны, ближайшей к вершине воронки. Детонационная волна «схлопывает» воронку к оси снаряда, а поскольку давление продуктов взрыва (почти полмиллиона атмосфер) превышает предел пластической деформации обкладки, последняя начинает вести себя как квазижидкость. Такой процесс не имеет ничего общего с плавлением, это именно «холодное» течение материала. Из схлопывающейся воронки выдавливается тонкая (сравнимая с толщиной оболочки) кумулятивная струя, которая разгоняется до скоростей порядка скорости детонации ВВ (а иногда и выше), то есть около 10 км/с и более. Скорость кумулятивной струи существенно превышает скорость распространения звука в материале брони (порядка 4 км/с). Поэтому взаимодействие струи и брони происходит по законам гидродинамики, то есть они ведут себя как жидкости: струя вовсе не прожигает броню (это широко распространенное заблуждение), а проникает в нее, подобно тому как струя воды под давлением размывает песок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector