Крупномасштабная структура вселенной
Содержание:
- Содержание
- Старые звездные скопления
- Интерактивная шкала масштабов Вселенной
- Панорамы
- Внутри вселенского пузыря
- Уменьшая масштабы
- Микроволновое излучение
- См. также
- Хаббловское время
- Определение возраста Земли
- Другие миры
- Боевой топор: происхождение и исторические особенности
- Потери обеих воюющих сторон
- Как представить масштабы Метагалактики
- Топ самые быстрые ракеты в мире
- Отзывы владельцев
- Метод стандартных свечей
- Примечания
- В каких странах реализуются программы пилотируемых космических полетов?
- ТЕКСТ ПОСЛАНИЯ ПАТРИАРХА ТИХОНА К АДМИРАЛУ КОЛЧАКУ (ПОДЛИННОСТЬ НЕ ДОКАЗАНА)
- Примечания
- Игры про ниндзя на ПК
- Напомнить пароль
- Солнце – это планета или звезда?
Содержание
Старые звездные скопления
Млечный Путь насчитывает более 160-ти так называемых , число звезд в которых может колебаться от тысяч до миллионов. При этом все эти светила, связаны гравитационной силой, и вероятнее всего образовались из одного газового облака. Отсюда следует, что большая часть звезд таких скоплений зародилась практически в одно время. В силу своего строения и размеров каждая звезда пошла своим эволюционным путем, а некоторые уже находятся на стадии того же белого карлика. Высчитывая возраст каждой астрономической единицы рассматриваемого скопления, можно с большой точностью определить возраст самого шарообразного скопления.
При помощи того же телескопа «Хаббл» астрономы смогли проанализировать возраст 41 шарообразного звездного скопления Млечного Пути. В результате было выявлено, что все скопления нашей галактики не младше 10 млрд лет, а наиболее старое (M4) имеет возраст 12,7 ± 0,7 миллиардов лет. Поэтому, учитывая некоторое время до формирования звезд, нижней границей возраста Вселенной стало число 13 млрд лет.
Старейшее звездное скопление Млечного пути — Мессье 4 (M4)
Интерактивная шкала масштабов Вселенной
Панорамы
Внутри вселенского пузыря
Однако нам мало понять сам масштаб
Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровый диаметр
Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?
Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.
Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.
Уменьшая масштабы
В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.
Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в центр. На краю Вселенной всё также будет мерцать реликтовое излучение.
Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.
Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.
Микроволновое излучение
Карта распределения реликтового излучения. Смотреть в полном размере.
30 июня 2001 года NASA запустила в космос аппарат под названием Wilkinson Microwave Anisotropy Probe (WNAP), задача которого изучать реликтовое излучение. При помощи результатов его наблюдений была построена новая карта (с разрешением в 35 раз больше, нежели предыдущая) распределения реликтового, микроволнового излучения. Анализируя эту карту, помимо насыщенной полосы в центре, излучаемой Млечным Путем, можно заметить распределение реликтового излучения за его пределами. Явно видимые неоднородности формируют пятнистую структуру, причем неравномерную. Подробное изучение этой структуры дает возможность точно оценить время, которое понадобилось для ее образования, вследствие Большого Взрыва. Оно составляет 13,7 ± 0,2 млрд лет.
При помощи описанных выше методов, ученые смогли достаточно точно определить возраст Вселенной, что несет первостепенное значение для космологии, а также для понимая нашего мироздания в целом.
См. также
Хаббловское время
Но вопросом о возрасте мироздания занимался не только телескоп, названый в честь ученого, но и сам ученый, американский астроном Эдвин Хаббл. Ему удалось вывести свою известную формулу v = H*D, где v – скорость расширения Вселенной, D – расстояние от наблюдаемой галактики до наблюдателя, а H – постоянная Хаббла, которая обратно пропорциональна времени. О существовании постоянной Хаббла, как величины, определяющей зависимость между расстоянием до объекта и скоростью его удаления, впервые предположил священник астроном из Бельгии — Жорж Леметр. Согласно его идее, мир произошел из одного, условно говоря, атома, а после — стал расширяться. Позже, эта теория шутливо была названа «Большим Взрывом», но в дальнейшем этот термин прочно закрепился в космологии.
Э.П. Хаббл со снимком галактики Андромеда в руках
Спустя некоторое время, в 1929 году Э. Хаббл получил более точное значение упомянутой постоянной. Очевидно, что возраст мироздания напрямую зависит от постоянной Хаббла. Изначально, используя имеющуюся модель Вселенной, ученые рассчитали, что величину, обратно пропорциональную постоянной Хаббла нужно умножить на 2/3. Однако в таком случае искомая величина составляет около 1,2 млрд лет, число, близкое к тому, что предложили индуисты еще в 150-м году до н.э. Впрочем, к концу XX-го века уже были получены астрономические данные, которые говорили о возрасте 13-15 млрд лет.
Как выяснилось, причиной неправильной оценки стали неверные представления о расширении Вселенной. Только в 1999-м году две группы астрономов смогли доказать, что последние 5-6 млрд лет расширение космического пространства ускоряется, а не замедляется, как считалось ранее. По современным подсчетам этим методом ученые вывели значение 13,798 ± 0,037 лет.
Определение возраста Земли
Принцип радиоизотопного датирования по углероду. Так определяют возраст ископаемых останков живых существ на Земле.
С середины XVIII века люди начали направленно изучать возраст Земли. Согласно известным физическим моделям ученый из Франции Жорж-Луи Леклерк де Бюффон оценил время, которое потребовалось бы для понижения температуры Земли с момента ее образования до той, которую имеет она сегодня (от 75 до 168 тыс. лет). Как утверждает физическая модель Земли, изначально она представлялась раскаленным шаром. В 1895-м году инженер из Ирландии — Джон Перри пересчитал эту цифру и получил 2–3 млрд лет. В 1896-м году Антуан Беккерель открыл радиоактивность, а спустя 9 лет британский физик Эрнест Резерфорд предложил метод оценки возраста земных пород при помощи радиоактивного распада.
Идея заключалась в том, чтобы определить, какая часть радиоактивного изотопа успела распасться, используя известные периоды полураспада, вычислить возраст образца. Основы радиоизотопного датирования разработал американский радиохимик Бертрам Болтвуд. При помощи данного метода в 1920-х годах было выявлено, что возраст некоторых минералов около 2-х миллиардов лет! Очевидно, возраст Земли не может превышать возраст самого мироздания, поэтому это открытие подвигло ученых найти действенный метод подсчета возраста Вселенной.
Сегодня считается, что с момента зарождения Земли как планеты прошло 4,54 ± 0,05 млрд лет.
Другие миры
Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.
Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.
Боевой топор: происхождение и исторические особенности
Потери обеих воюющих сторон
Нужно отметить, что разные источники а также разные историки называют часто цифры потерь, которые не сходятся с другими. Генерал Ротмистров в свое время утверждал, что с обеих сторон в течение дня, во время танковых боев под Прохоровкой было выведено из строя больше 700 боевых машин. После завершения танковой битвы Сталину докладывали о том, что за 2 дня боев один танковый корпус потерял больше половины личного состава боевых машин, а второй корпус потерял приблизительно 30% танков в ходе сражений.
Что касается человеческих потерь, то со стороны СССР за два дня танковых боев, которые были самыми жестокими, было потеряно практически 4 тыс. человек убитыми, а также пропавшими без вести. А с другой стороны фронта корпусы советских войск потеряли почти 5 тыс. человек убитыми и пропавшими без вести.
Эпизод во время боя
Немецкий федеральный военный архив сообщал о том, что после сражения под Прохоровкой Вермахт потерял приблизительно 70 танков и 1 тыс. человек убитыми. Такая разница между человеческими потерями и потерями танков объясняется тем, что немецкая сторона имела более модернизированные и мощные боевые машины, а также немецкая разведка постоянно сообщала своему командованию о том, что именно на этом участке фронта советские войска будут предпринимать танковую атаку.
Как представить масштабы Метагалактики
Ни один человек неспособен полностью оценить масштабы окружающего нас пространства. Для того чтобы только приблизиться к ответу на этот вопрос, необходимо понять размеры отдельных частей Вселенной. Для человека даже обогнуть земной шар является сложной, хоть и выполнимой задачей. Масштабы же космоса многократно больше. Если сравнить Землю с Сатурном, то она будет выглядеть как монетка на фоне баскетбольного мяча. Но если поставить её в один ряд с Солнцем, то она будет выглядеть маленьким зёрнышком.
Как видим, даже на фоне Солнечной системы Земля – незначительная её часть. Солнечная система же является ещё более мелким образованием на фоне галактики. На этом этапе размеры становятся настолько велики, что измеряются так называемыми астрономическими единицами. Одна такая единица приравнивается к 150 миллиардам километров. Размеры Солнечной системы составляют 120 астрономических единиц. Диаметр Млечного пути, в которых входит наша система, равен 1 квинтиллиону километров. Чтобы понять масштабы этого числа, стоит упомянуть, что в нём содержится 18 нулей, при этом в галактике имеются миллиарды звёзд, большинство из которых значительно превосходят по размеру наше Солнце.
А ведь наша галактика является не единственной во Вселенной, даже невооружённым взглядом на земном небосклоне можно увидеть звёздные скопления, находящиеся от нас в относительной близости:
- Малое Магелланово облако;
- Андромеда;
- Большое Магелланово облако.
Несмотря на то что было сказано об их близости к нашей галактике, реальные расстояния до них составляют миллионы световых лет.
Все галактики объединяются в группы. Так, Млечный путь с соседними галактиками составляет местную группу, диаметр которой равен примерно 1 мегапарсеку. Если передвигаться со скоростью света, то на то, чтобы переместиться из одного конца этой группы в другой, понадобится 3,2 миллиона лет.
Однако даже эта величина не является большой в масштабах Вселенной. Все группы галактик объединяются между собой в суперкластеры. В них могут входить сотни и даже тысячи объединений галактик. Для примера можно взять Суперкластер Девы, в который входит и наш Млечный путь. В него включено более сотни объединений, а протяжённость составляет более 200 миллионов световых лет. И это всего лишь одна из частей гигантского формирования Ланиакея, диаметр которого составляет более 500 миллионов световых лет
Чтобы приблизительно понять размеры Вселенной, нужно принять во внимание, что это всего лишь незначительная часть космоса, которую в настоящий момент может видеть человечество
Топ самые быстрые ракеты в мире
Отзывы владельцев
Метод стандартных свечей
Для определения расстояний до звезд в других галактиках и расстояний до самих этих галактик используется метод стандартных свечей. Как известно, чем дальше от наблюдателя расположен источник света, тем более тусклым он кажется наблюдателю. Т.е. освещенность лампочки на расстоянии 2 м будет в 4 раза меньше, чем на расстоянии 1 метр.Это и есть принцип, по которому измеряется расстояние до объектов методом стандартных свечей. Таким образом, проводя аналогию между лампочкой и звездой, можно сравнивать расстояния до источников света с известными мощностями.
Масштабы разведанной существующими методами Вселенной впечатляют. Смотреть инфографику в полном размере.
В качестве стандартных свечей в астрономии выступают объекты, светимость (аналог мощности источника) которых известна. Это может быть любого рода звезда. Для определения ее светимости астрономы измеряют температуру поверхности, опираясь на частоту ее электромагнитного излучения. После чего, зная температуру, позволяющую определить спектральный класс звезды, выясняют ее светимость при помощи диаграммы Герцшпрунга-Рассела. Затем, имея значения светимости и измерив яркость (видимую величину) звезды, можно посчитать расстояние до нее. Такая стандартная свеча позволяет получить общее представление о расстоянии до галактики, в которой она находится.
Однако данный метод достаточно трудоемкий и не отличается высокой точностью. Поэтому астрономам удобнее использовать в качестве стандартных свечей космические тела с уникальными особенностями, для которых светимость известна изначально.
Примечания
- . Дата обращения: 14 декабря 2015.
- Е. Б. Гусев. . Астронет. Дата обращения: 17 января 2015.
- . Дата обращения: 31 мая 2015.
- ↑
- И. Л. Генкин. . Астронет (2 марта 1994). Дата обращения: 7 февраля 2014.
- . Дата обращения: 24 марта 2014.
- Академик Виталий Лазаревич Гинзбург. . Элементы.ру. Дата обращения: 24 марта 2014.
- . Дата обращения: 6 сентября 2015.
- . Дата обращения: 23 ноября 2015.
- . Дата обращения: 6 сентября 2015.
- . Дата обращения: 23 ноября 2015.
- . Дата обращения: 14 декабря 2015.
- ↑ . Астронет. Дата обращения: 16 января 2015.
- ↑ . Дата обращения: 12 мая 2015.
- . Дата обращения: 28 июля 2015.
- . Дата обращения: 29 ноября 2011.
- Джон Мазер. . Элементы.ру. Дата обращения: 24 марта 2014.
- (англ.)
- . Дата обращения: 18 сентября 2009.
В каких странах реализуются программы пилотируемых космических полетов?
ТЕКСТ ПОСЛАНИЯ ПАТРИАРХА ТИХОНА К АДМИРАЛУ КОЛЧАКУ (ПОДЛИННОСТЬ НЕ ДОКАЗАНА)
Примечания
- Данное название более уместно для главарей байкеров, однако официально Киллоу, Ультрафиолет и Мистер Э называются Генералами.
Персонажи LEGO Ninjago | |
---|---|
Ниндзя |
Лидеры: Ву · Ллойд ГармадонКай · Ния · Джей Уокер · Зейн · КоулСоюзники: Мисако · Сокол · Сайрус Борг · П.И.В.В.Ж. · Джульен · Ронин · Мистаке · Акита · Катару · Гримфакс · Сорла · Дарет · Комиссар Полиции · Скотт · Окино · ВанияБывшие союзники: Гармадон · Капитан Сото |
Скелеты |
Лидер: СамукайВайплэш · Кранча · Нускал · Фракджо · Чопов · Крейзи · Бонзай |
Серпентины |
Гипнобрай: Скейлз · Слитра · Мезмо · Раттла · Сельма · Скейлз-младшийФэнгпайе: Фэнгтом · Фэнгдам · Фэнг-Суэй · СнеппаВеномари: Ацидикус · Лизару · Спитта · Лаша · Золтар · Предыдущий генерал ВеномариКонстриктай: Скалидор · Байта · Чокун · СнайкАнакондрай: Арктурус · Генералы Анакондрай · Пайтор Пи Чамсворт · Змея Анакондрай |
Пираты |
Лидер: СотоПервый помощник · Безглазый Пит |
Каменная армия |
Лидеры: Оверлорд · КозуГигантские Каменные воины · Каменные воины · Каменные мечники · Каменные разведчики · Каменные мини-воины |
Ниндроиды Оверлорда |
Лидеры: Оверлорд · КрипторМини-дроид · Ниндроиды-воины · Ниндроиды-дроны · Спецотряд Ниндроидов «Крылатые» |
Культисты Анакондрай |
Лидер: ЧенКлаус · Зугу · Айзор · Капо · Чоп · Крейт · Сливен · Механик |
Мастера стихий(Альянс стихий) |
Нынешние: Карлофф · Гриффин Тёрнер · Скайлор Чен · Нейро · Пейл · Джейкоб Певзнер · Гравис · Камилла · Болобо · Токс · Эш · ШедоуПредыдущие: Рэй · Майя · Дедушка Коула · Мать Джея · Мать Скайлор · Мастер Льда · Мастер Гравитации · Мастер Света · Мастер Тени · Мастер Звука · Дедушка Гриффина Тёрнера · Лили |
Призрачная армия |
Лидеры: Высочайшая · МорроРейт · Банша · Гултар · Лучник Душ · Атилла · Хаклер · Хоул · Минг · Спайдер · Вуу · Коулер · Сайрус · Гурка · Питч · Пайррхус · Вейл · Йокай · Скримеры |
Небесные пираты |
Лидер: НадаканФлинтлок · Догшанк · Дублон · Обезьянка Вретч · Клэнси · Бако · Скиффи · Кирен · Два неизвестных Пирата |
Теневая армия |
Лидер: Клаус |
Ученики Янга |
Учитель: Кадакуно Янг«Чак» · Мартин · Крис |
Багряная армия |
Лидеры: Кракс · АкрониксМакия · Бланк · Раггманк · Вермин · Риветт · Слэкджоу · Таннин · Бафмиллион |
Сыны Гармадона |
Лидеры: Гармадон · ХарумиКиллоу · Ультрафиолет · Мистер Э · Люк Каннингем · Каштановый дробильщик · Нэйлз · Ирокез · Сойер · Скутер · Баффер · «Змей Ягуар» · Колосс |
Охотники на Драконов |
Бывший лидер: Железный баронНынешний лидер: ФейтДжет Джек · Скар Череполом · Мазл · Эркейд · Безногий отец · Игрунок · Коготь · Нитро · Сталворд Сорвиголов |
Они |
Нынешний лидер: ОмегаБывшие лидеры: Вожди ОниБывший член: Мистаке |
Огненные змеи |
Нынешний лидер: АсфираБывший лидер: Мамбо-пятыйЧар · Огненные разрушители · Огненные истребители · Огненные хлестатели · Советник Мамбо-пятого |
Вьюжные самураи |
Лидер: ЗейнХакс · Гримфакс · Вьюжные воины · Вьюжные лучники · Вьюжные мечники · Советник Гримфакса |
Формлинги |
Лидер: Вождь ФормлинговАкита · КатаруБывший член: Хакс |
Приспешники Механика | Лидер: Механик |
Армия Унагами |
Лидер: УнагамиСушими · Сушисты Сушими · Официантка Сушими · Аватар Харуми · Красные визоры (Красный 27 · Красный 29) |
Грубо-крысы |
Лидер: Атта РаттаРичи · Хауснер |
Неигровые персонажи и игроки
«Высшей империи» |
Неигровые песонажи: Гипер-Звук · Энтони Брутинелли · Семь · Окино · Успешный самурай · ПроныраИгроки: Скотт · Манови · Уилл · Бета Джей 137 · Ди-Джей 81 · Джейбёрд 64 · Джейвокин 238 · Аватар розового Зейна |
Жители Королевства Шинтаро |
Нынешний лидер: ВанияБывший лидер: ВангелисКрылатые стражи Шинтаро (Хайльмар) |
Пробуждённые воины |
Лидер: Хранитель Черепа |
Мансы |
Лидер: МартессаМёрт · Мо |
Геклы |
Лидер: ГалчГлэк · Гинкл · Мистер Уайз (неканон) |
Хранители |
Лидер: МамматусПоулерик · Хранитель Грома · Хранитель Грохота · Каменный Голем |
Группы |
Белые Ниндроиды · Высаженные Ниндзя · Гармония Кружитцу · Люди Неверленда · Запасные Ниндзя · Злые Ниндзя (Злой Кай · Злой Джей · Злой Коул · Злой Зейн) · Королевские кузнецы · Императорская гвардия · Духи Озера · Клуб исследователей · Монахи · Писатели судеб · Пустынное племя · Племя Сибекс · Племя Первозданного ока · Солдаты Ниндзяго · Эскимосы · Самурайское воинство (Неверленд) · Сопротивление (Неверленд) · Сопротивление · Сорвиголовы · Лига Джеев |
Другие |
Брэд Тудабон · Атхавк · Бома · Кэтти · Клэр · Джаспер · Клифф Гордон · Клатч Пауэрс · Мать Коула · Краггер · Лавал · Доктор Беркмэн · Эдна Уокер · Эд Уокер · Смит · Андерхилл · Шиппелтон · Император Ниндзяго · Императрица Ниндзяго · Первый мастер Кружитцу · Фенвик · Финн · Самурай (сезон 8) · Хранители Меча Святилища · Двэйн · Капитан корабля · Влад Туту · Охранники библиотеки Дому · Фред Файнли · Гейл Госсип · Джин · Эхо Зейн · Мать Харуми · Отец Харуми · Дэн и Кевин Хейгмены · Хатчинс · Джаггернаут · Гизмо · Лу · Грамиллер · Ночной Сторож · Винни · Нобу · The Fold · Нунан · О’Дойл · Пэтти Кис · Почтальон · Владелец ресторана · Родриго · Руфус Макалистер · Нобл · Салли · Жюри конкурса талантов Ниндзяго · Саймон · Томми · Водитель автобуса · Рэйчел Воробей · Спарринг-робот · Сьюзи Уилер · Ведущий NGTV · Хегмэн · Вохира · Янг · Доктор Йост · Сесил Патнэм · Дилара · Нельсон · Робот Менеджер · Антония · Сорла · Миссис ДайерShadow of Ronin: Гражданин Спиндзяго · Человек-из-печенья · Ожившие статуи |
Игры про ниндзя на ПК
Напомнить пароль
Солнце – это планета или звезда?
Солнце – это звезда. Есть ряд критериев, согласно которым небесное тело может быть отнесено к разряду звезд или планет. Солнце соответствует именно тем характеристикам, которые присущи звездам.
Во все времена значение Солнца было очень велико, а его изучение и исследование всегда были главными направлениями в астрономии. Солнце – это самый большой объект Солнечной системы. К тому же Солнце занимает 99, 8% всей массы системы.
Абсолютно все космические тела Солнечной системы вращаются именно вокруг Солнца. Солнце намного больше Земли. Это относится и к его массе, и к его размерам. Диаметр Солнца составляет 1,3 миллиона километров, его вес – 1.989*10^30 килограммов, температура на его поверхности составляет 5800К, а период оборачивания Солнца вокруг своей оси составляет 25,4 дней.
На Солнце можно наблюдать протекание очень сложных процессов. К примеру, ученый Галилей еще в далеком 1610 году, наблюдая за Солнцем в телескоп, увидел на его поверхности темные пятна. С их помощью он сумел определить время и период оборачивания Солнца. Поверхность Солнца нельзя назвать спокойной, так как она постоянно бурлит, и при этом все вещества, из которых состоит Солнце, то опускаются, то поднимаются. Поэтому вся солнечная поверхность как будто покрыта зернами и гранулами.
Следует отметить, что размер этих зерен и гранул колеблется от 1 до 2 тысяч километров, а период их существования составляет всего лишь несколько минут. Солнечные пятна, открыты Галилеем, намного больше гранул – несколько сотен тысяч километров. К тому же они более устойчивые, чем гранулы, и могут просуществовать приблизительно месяц. Для Солнечных пятен характерен темный оттенок, а их температура составляет 3500К. Количество солнечных пятен возрастает в период солнечной активности, когда можно понаблюдать и за солнечными вспышками.
Солнечные вспышки – это очень сильные выбросы солнечной энергии с его поверхности. Они сопровождаются не только усиленным излучением некоторых участков Солнца, но и активными выбросами частиц, которые могут долетать до магнитного поля Земли, вызывая своим прилетом так званое возмущение, которое плохо сказывается на здоровье многих людей и работе приборов.
Солнце – планета гигант – состоит из внешнего светящегося слоя фотосферы, разреженного горячего газового слоя хромосферы и разреженной горячей короны. Температура в хромосфере достигает десятки тысяч градусов. Корону Солнца увидеть можно только при полном солнечном затмении.
Существует также такое понятие, как солнечный ветер. Это частицы, которые покидают Солнце и устремляются в пространство космоса. Солнечный ветер присущий Солнцу даже при великой солнечной силе гравитации. О существовании солнечного ветра многие ученые долго сомневались. Однако в 1959 году солнечный ветер был зафиксирован космическими аппаратами. До верхних слоев Земли достигают лишь отдельные частицы Солнечного ветра, так как основной поток частиц останавливается благодаря земельному магнитному полю. Частицы солнечного ветра, попадая в верхние слоя Земли, вызывают северное сияние.
Как установили многие современные ученые, источником солнечной энергии есть термоядерные реакции, в процессе которых легкие химические элементы превращаются в тяжелые элементы. Сегодня это превращение водорода в гелий. Водород составляет на сегодняшний день 70% всей массы Солнца, а гелий – лишь 28%. Эти термоядерные реакции могут протекать лишь при высокой температуре, которая находится в центре самого Солнца.
По мнению ученых, Солнце – это звезда, которая отличается от остальных звезд тем, что звезды находятся на большем расстоянии от Земли, чем само Солнце. Это было доказано с помощью спектрального анализа солнечного излучения и изучения его состава.
Видео: как устроено Солнце