Что такое галактика и сколько их? описание, фото и видео

От мала до велика

Размеры галактик поражают многообразием. Самая крупная из обнаруженных на данный момент — линзообразная IC 1101 из скопления Abell 2029 с диаметром примерно 6 миллионов световых лет (то есть свет от центра к окраинам будет идти 3 миллиона лет). Вторая по величине галактика Геркулес-А меньше в четыре раза, при этом её масса всё равно в тысячу раз больше массы нашей галактики. Третья по величине галактика NGC 262 чуть меньше Геркулеса-А — её диаметр составляет 1,3 миллиона световых лет.

Шесть миллионов световых лет в одном снимке (фото: David A. Aguilar (CfA))

Самую маленькую из известных человечеству галактик — Segue 2 — учёные обнаружили неподалёку от Млечного Пути. Эта галактика очень старая: её звёздам, которых насчитывается всего тысяча, уже миллиарды лет. Вероятнее всего, существуют галактики ещё меньше, но их пока довольно трудно обнаружить. Обычно у крупных галактик есть большое количество вращающихся вокруг них карликовых спутников.

Segue 2 — «космический гномик», вернее, дворф (Garrison-Kimmel, Bullock / UCI)

Галактики любых размеров и форм также могут быть радиогалактиками. Все галактики «светятся» в радиодиапазоне, но к радиогалактикам относят лишь те из них, которые излучают в нём особенно интенсивно. Самые мощные из известных — Лебедь А (3C 405), Центавр А (NGC 5128), Дева А (NGC 4486) и Печь А (NGC 1316). Наблюдение за неправильной галактикой М82 привело учёных к выводу, что причиной интенсивного радиоизлучения может стать сильный взрыв в ядре.

«Лебедь А», мощный источник радиоволн (J. McKean and M. Wise / ASTRON)

Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции Вселенной, происходящий под действием гравитационных сил. Как предполагают ученые, около 14 млрд. лет назад произошел большой взрыв, после которого Вселенная везде была одинаковой. Затем частицы пыли и газа начали группироваться, объединяться, сталкиваться и таким образом появлялись сгустки, которые позднее превращались в галактики. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Скопление газообразного водорода в пределах таких сгустков стало первыми звездами.

С момента зарождении галактика начинает сжиматься. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.

Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.

Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения. К ним относится наше Солнце.

Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10-15 млрд. лет назад.

Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик. Очень важным открытием явилось то, что некоторые ядра галактик активны. Это открытие было неожиданным. Раньше считалось, что ядро галактики – это не больше чем скопление сотен миллионов звёзд. Оказалось, что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течение короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы, происходящие в них, «активность».

В 1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали квазарами. Сейчас считается, что ядра некоторых галактик представляют собой квазары.

Автор статьи: Михаил Карневский, 15.01.2013
Обновлено: Татьяна Сидорова, 14.02.2018
Перепечатка без активной ссылки запрещена!

Вопросы от читателей из раздела «Вопрос экспертам»:

  • Свет от дальних галактик моложе или старше?
  • Что такое разлёт галактик?
  • Почему после большого взрыва сразу появились галактики?
  • Почему Черная Дыра не засасывает звезды, а заставляет их вращаться вокруг себя?

Карликовая галактика

История открытия

Адрес солнечной системы

Млечный путь люди могут наблюдать на прозрачном темном небе из любой точки Земли. Он выглядит как широкая полоса, похожая на белое полупрозрачное облако. Так как солнечная система расположилась на внутренней части рукава Ориона, то люди могут увидеть только небольшую часть галактики.

Солнце поселилось у самой крайней части диска. Расстояние от нашей звезды до ядра галактики равно 28 тыс. световых лет. Для того чтобы Солнце могло сделать один круг, потребуется 200 млн лет. За то время, которое прошло с момента рождения звезды, Солнце облетело галактику около тридцати раз.

Планета Земля обитает в уникальном месте, там, где угловая скорость вращения звезд, совпадает с угловым вращением спиральных рукавов. В результате такого взаимодействия, звезды не покидают рукава или никогда в них не входят.

Такой вид вращения не типичен для галактики. Обычно, спиральные рукава имеют постоянную угловую скорость и вращаются, как спицы в колесе велосипеда. При этом звезды двигаются с абсолютно другой скоростью. В результате этого несоответствия звезды перемещаются, то залетая в спиральные рукава, то вылетая из них.

Это место называется коротационный круг или «пояс жизни». Ученые считают, что только в зоне коротации (при переводе с английского языка это слово звучит, как зона совместного вращения), где очень мало звезд, можно найти обитаемые планеты. Сами спиральные рукава имеют очень высокую радиацию, и жить в таких условиях невозможно. Исходя из этой гипотезы, систем, на которых может зародиться жизнь, очень мало.

Первые

Первая Галактика Дата Примечания
Первая галактика Млечный Путь и Галактика Андромеды Эрнст Эпик определил расстояние до туманности Андромеды и обнаружил, что она не может быть частью Млечного Пути. Так стало понятно, что Млечный Путь не является всей Вселенной. Величина, полученная Эпиком, близка к современной. В 1923 году Эдвин Хаббл определил расстояние до туманности Андромеды другим способом, получив величину в 3 раза меньше современной, хотя и указывавшую на расположение туманности Андромеды за пределами Млечного Пути.
Первая радиогалактика Лебедь А Первым из нескольких объектов, позже названных радиозвездами, Лебедь A был идентифицирован как отдалённая галактика.
Первый квазар 3C 273 3C 48 3C 273 был первым квазаром, для которого было определено красное смещение, и поэтому некоторые называют его первым квазаром. Другие первым квазаром считают первую радиозвезду 3C 48, для которой не удалось определить спектр.
Первая сейфертовская галактика M77 (NGC 1068) Особенности Сейфертовских галактик впервые наблюдались в M77 в 1908 году. Однако выделены в класс они были только в .
Первая релятивистская струя 3C 279 Струя испускается квазаром.
Первая релятивистская струя из сейфертовской галактики III Zw 2
Первая спиральная галактика Галактика Водоворот Лорд Уильям Парсонс открыл спиральную структуру в белой туманности M51.

Прототипы

Это список первых галактик, ставших прототипами классов галактик.

Класс Галактика Дата Примечания
BL Lac object BL Ящерицы (BL Lac) Это активное галактическое ядро было изначально каталогизировано как переменная звезда.
Галактика типа Хоага Объект Хоага Является прототипом кольцеобразных галактик.

Модули

Галактика NGC474

Галактика NGC474
Тип: Эллиптическая галактика
Созвездие: Рыбы

Открыта Уильямом Гершелем в 1784 году. Многочисленные светящиеся оболочки показывают неожиданно сложную структуру этой галактики

Если Галактика южное колесо выглядит так, как должны выглядеть активные галактики, то NGC474 – как раз тот вариант, как эллиптические галактики выглядеть не должны. На снимке перед вами отнюдь не впечатление художника после прочтения научно-фантастического романа, а реально существующая галактика, которая разрывается на части приливными влияниями спиральной галактики позади нее и над ней. Однако именно из-за разреженных оболочек газа и пыли, которые придают этой галактике вид медузы, мы знаем, что многие, если не большинство известных галактик имеют вокруг себя подобные газовые оболочки. Исследователи полагают, что это – прямой результат столкновений с другими галактиками в (космологически говоря) недавнем прошлом.

&nbsp

Вселенная… Непостижимая бездна

Коротко: вселенная – это безграничный объем пространства, заполненный звездами, звездными системами, галактиками, черными дырами, пустотой и т. д. И, вполне возможно, в ней есть еще много различных объектов, явлений, о которых современная наука даже не подозревает. Все это многообразие находится в постоянном движении и живет своей, иногда непостижимой для нас жизнью.

Когда смотришь на ночное небо, кажется, что оно просто напичкано звездами. Снимки, сделанные с помощью самого мощного телескопа в мире Хаббла, как будто подтверждают это впечатление. Да и последние исследования астрономов показывают, что во вселенной существуют как минимум 100-200 миллиардов галактик, а по некоторым данным – более 500 млрд. Однако на деле все эти звездные скопления бесконечно одиноки в безграничной вселенной. Зачастую их разделяют такие огромные расстояния, что человеческий разум просто не в силах себе их представить.

Вселенная образовалась после Большого Взрыва и, соответственно, имеет свой возраст, хотя и не имеет границ. По последним данным, возраст праматери всего, что есть в космосе, исчисляется 13,75±0,13 млрд лет. Правда, немало серьезных ученых считают, что Вселенная вечна, что она существовала всегда, и никаких Больших Взрывов не было и в помине. Однако оставим научные споры «специально обученным людям» и перейдем к главному пункту нашей статьи.

Особенности строения неправильных галактик

Неправильные галактики – общее название для совершенно разных космических образований, не вписывающихся в последовательность Хаббла.

В отличие от эллиптических или спиральных галактик, имеющих четкую структуру, неправильные галактики никакой четко выраженной структуры не имеют. Они не обладают ни диском (спиральные галактики), ни однородностью структуры (эллиптические галактики), не имеют ярко выраженного галактического ядра, рукавов и т.п., зато почти всегда наличествует нескольких очагов звездообразования.

Слева неправильная галактика NGC 1569, а справа спиральная M31. Как говорится – найди три отличия

В процентном отношении неправильные галактики составляют примерно четверть от общего числа галактик во Вселенной. Совершенно очевидно, что некоторые неправильные галактики в прошлом имели вполне традиционную форму спиральных или эллиптических, но были деформированы под гравитационным воздействием других галактик.

Большинство неправильных галактик имеют совсем небольшой размер: с диаметром 1,5—3 кпс и умеренной или малой светимостью. Масса наиболее крупных из них едва ли достигает 1/10 массы Млечного пути. Из-за своих небольших размеров они больше подвержены влиянию окружающей среды, в том числе столкновению с большими галактиками и межгалактическими облаками космической пыли.

Упрощенная схема классификации галактик по Хабблу. Неправильные (или иррегулярные галактики (Irr)) стоят особняком

Краткая история гражданской авиации

Начало производства

Для начала проясним происхождение названия. В данном случае «Кедр» – это не только название породы дерева, но и аббревиатура, означающая «Конструкция Евгения Драгунова». Доработкой и доводкой модели 70-х занимался сын главного конструктора – М. Е. Драгунов. Работы проводились на легендарном Ижевском механическом заводе, на котором производилось едва ли не все огнестрельное оружие России. «Кедр» тем не менее был выпущен на ИМЗе только в количестве 40 опытных экземпляров. В результате пистолет-пулемет был признан МВД и поступил на вооружение. Серийный выпуск пистолета-пулемета передали Златоустовскому МЗ.

Для стрельбы с модели ПП-91 «Кедр» используются патроны 9х18 ПМ. В настоящее время данный вид оружия стоит на вооружении едва ли не всех правоохранительных органов РФ. Его используют специальные подразделения МВД, ФСКН, ФСИН, фельдъегерская служба, инкассаторы и ведомственная охрана.

Неправильные галактики

У неправильных галактик отсутствует какая-либо конкретная форма. Но так как таких образований множество во Вселенной, то такие галактики тоже классифицировали. I тип (IO) неправильных галактик составляют необычные одиночные соединения. Как правило, состоят они из молодых звёзд и туманностей. II тип (Im) объединяет взаимодействующие между собой галактики. Более того, чаще это столкнувшиеся и соединившиеся галактики. Месье определил два неправильных формирования: галактики Месье 85 и 86.

Неправильная галактика

Безусловно, множественность и индивидуальность галактик это уже известный факт. Разумеется, что их изучение продолжается. И вероятно, что учёные откроют ещё много нового.

Как и где правильно встать на учет в военный комиссариат?

Астрофизические параметры и типы галактик

Первые исследования космоса, проведенные в начале XX века, дали обильную почву для размышлений. Обнаруженные в объектив телескопа космические туманности, которых со временем насчитали более тысячи, представляли собой интереснейшие объекты во Вселенной. Длительное время эти светлые пятна на ночном небе считались скоплениями газа, входящими в структуру нашей галактики. Эдвин Хаббл в 1924 году сумел измерить расстояние до скопления звезд, туманностей и сделал сенсационное открытие: эти туманности — ни что иное, как далекие спиралевидные галактики, самостоятельно странствующие в масштабах Вселенной.

Американский астроном впервые предположил, что наша Вселенная – это множество галактик. Исследования космоса в последней четверти XX века, наблюдения, сделанные с помощью космических аппаратов и техники, включая знаменитый телескоп Хаббл, подтвердили эти предположения. Космос безграничен и наш Млечный путь — далеко не самая крупная галактика во Вселенной и к тому же не является ее центром.

Усилиями Эдвина Хаббла мир получил систематизированную классификацию галактик, делящую их на три типа:

  • спиральные;
  • эллиптические;
  • неправильные.

Эллиптические галактики и спиральные являются самыми распространенными типами. К ним относятся наша галактика Млечный Путь, а также соседняя с нами галактика Андромеда и многие другие галактики во Вселенной.

По классификации такие галактики обозначаются латинской буквой E. Все на сегодняшний день известные эллиптические галактики разделены на подгруппы E0-E7. Распределение по подгруппам осуществляется в зависимости от конфигурации: от галактик почти круглой формы (E0, E1 и E2)до сильно растянутых объектов с индексами E6 и E7. Среди эллиптических галактик встречаются карлики и настоящие гиганты, имеющие диаметры в миллионы световых лет.

К спиральным галактикам относятся два подтипа:

  • галактики, представленные в виде пересеченной спирали;
  • нормальные спирали.

Первый подтип выделяется следующими особенностями. По форме такие галактики напоминают правильную спираль, однако в центре такой спиральной галактики находится перемычка (бар), дающая начало рукавам. Такие перемычки в галактике обычно являются следствием физических центробежных процессов, делящих ядро галактики на две части. Существуют галактики с двумя ядрами, тандем которых и составляет центральный диск. Когда ядра встречаются, перемычка исчезает и галактика становится нормальной, с одним центром. Существует перемычка и в нашей галактике Млечный путь, в одном из рукавов которой находится наша Солнечная система. От Солнца к центру галактики путь по современным оценкам составляет 27 тыс. световых лет. Толщина рукава Ориона Лебедя, в котором пребывает наше Солнце и вместе с ним наша планета, составляет 700 тыс. световых лет.

В соответствии с классификацией спиральные галактики обозначаются латинскими буквами Sb. В зависимости от подгруппы, существуют и другие обозначения спиральных галактик: Dba, Sba и Sbc. Разница между подгруппами определяется длиной бара, его формой и конфигурацией рукавов.

Самый редкий тип — неправильные галактики. Эти вселенские объекты представляют собой крупные скопления звезд и туманностей, не имеющие четкой формы и структуры. В соответствии с классификацией они получили индексы Im и IO. Как правило, у структур первого типа диска нет или он слабо выражен. Нередко у таких галактик можно рассмотреть подобие рукавов. Галактики с индексами IO представляют собой хаотическое скопление звезд, облаков газа и темной материи. Яркими представителям такой группы галактик являются Большое и Малое Магелланово Облако.

Исходя из имеющейся классификации и по результатам исследований, можно с некоторой долей уверенности ответить на вопрос, сколько галактик во Вселенной и какого они типа. Больше всего во Вселенной спиральных галактик. Их более 55 % от общего количества всех вселенских объектов. Эллиптических галактик в два раза меньше — всего 22% от общего числа. Неправильных галактик, аналогичных Большому и Малому Магеллановым Облакам, во Вселенной только 5%. Одни галактики соседствуют с нами и находятся в поле зрения мощнейших телескопов. Другие находятся в самом дальнем пространстве, где преобладает темная материя и в объективе видна больше чернота бескрайнего космоса.

Центр и ядро

«Сердце» Млечного Пути находится в созвездии Стрельца. Без его исследования тяжело понять до конца, какова наша Галактика. Название «ядро» в научных трудах либо относится только к центральной области поперечником всего несколько парсек, либо содержит в себе балдж и газовое кольцо, считающееся местом зарождения звезд. Дальше будет употребляться первый вариант термина.

В центр Млечного Пути с трудом проникает видимый свет: он сталкивается с огромным количеством космической пыли, скрывающей то, как смотрится наша Галактика. Фото и изображения, сделанные в инфракрасном спектре, существенно расширяют познания астрологов о ядре.

Данные об особенностях излучения в центральной части Галактики натолкнули ученых на мысль, что в сердцевине ядра находится черная дыра. Ее масса более чем в 2,5 млн раз больше массы Солнца. Вокруг этого объекта, по мнению исследователей, крутится еще одна, но менее впечатляющая по своим параметрам, черная дыра. Современные познания об особенностях структуры космоса позволяют предположить, что подобные объекты находятся в центральной части большинства галактик.

Виды галактик во Вселенной

Хаббл изучал туманности и обосновал, что многие из них являются формированиями, схожими с Млечным путем. На основе собранного материала он описал, какой вид имеет галактика и какие типы подобных космических объектов существуют. Хаббл измерил расстояния до некоторых из них и предложил свою систематизацию. Ей ученые пользуются и сегодня.

Все множество систем во Вселенной он разделил на 3 вида: галактики эллиптические, спиралевидные и неправильные. Каждый тип интенсивно изучается астрологами всего мира.

Кусочек Вселенной, где расположена Земля, Млечный путь, относится к типу «спиралевидные галактики». Виды галактик выделяются на основе различий их форм, влияющих на определенные свойства объектов.

Расположение

Млечный Путь в небе узнается быстро благодаря широкой и вытянутой белой линии, напоминающей молочный след. Интересно, что эта звездная группа доступна для обзора с момента формирования планеты. На самом деле, этот участок выступает галактическим центром.

Галактика простирается на 100000 световых лет в диаметре. Если бы вам удалось посмотреть на нее сверху, то заметили бы выпуклость в центре, от которой исходят 4 крупных спиральных рукава. Этот тип представляет 2/3 вселенских галактик.

На снимке отображена похожая на нашу галактика NGC 6744

В отличие от привычной спирали, экземпляры с перемычкой вмещают стержень в центре с двумя ответвлениями. У нашей галактики есть два главных рукава и два второстепенных. В рукаве Ориона расположена наша система.

Млечный Путь не статичен и вращается в космосе, перенося с собою все объекты. Солнечная система движется вокруг галактического центра на скорости 828000 км/ч. Но галактика невероятно огромная, поэтому на один проход уходит 230 миллионов лет.

В спиральных рукавах накапливается много пыли и газа, из-за чего создаются прекрасные условия для образования новых звезд. Рукава исходят от галактического диска, охватывающего примерно 1000 световых лет.

В центре Млечного Пути можно заметить выпуклость, наполненную пылью, звездами и газом. Именно из-за этого вам удается увидеть лишь небольшой процент от общего количества галактических звезд. Все дело в густой газовой и пылевой дымке, перекрывающей обзор.

На инфракрасном снимке продемонстрирована протяжность Млечного Пути

В самом центре скрывается сверхмассивная черная дыра, превышающая по массе Солнце в миллиарды раз. Скорее всего, раньше она была намного меньше, но регулярный рацион из пыли и газа позволил ей вырасти. Это невероятная обжора, потому что иногда засасывает даже звезды. Конечно, напрямую ее увидеть невозможно, но гравитационное влияние отслеживается.

Вокруг галактики расположен ореол горячего газа, где проживают старые звезды и шаровые скопления. Он простирается на сотни тысяч световых лет, но вмещает лишь 2% звезд от тех, что находятся в диске. Не будем забывать и про темную материю (90% галактической массы).

Всемирные дни, поддерживаемые ВОЗ

Млечный путь

Солнце обращается вокруг центра вполне рядовой спиральной галактики, в состав которой входят 200−400 миллиардов звезд. Ее диаметр приблизительно равен 28 килопарсекам (чуть больше 90 световых лет). Радиус солнечной внутригалактической орбиты — 8,5 килопарсек (так что наше светило смещено к внешнему краю галактического диска), время полного оборота вокруг центра Галактики — примерно 250 миллионов лет.

Балдж Млечного Пути имеет эллипсовидную форму и наделен баром, который обнаружили совсем недавно. В центре балджа находится компактное ядро, заполненное звездами различного возраста — от нескольких миллионов лет до миллиарда и старше. Внутри ядра за плотными пылевыми облаками скрывается достаточно скромная по галактическим стандартам черная дыра — всего лишь 3,7 миллиона солнечных масс.

Наша Галактика может похвастаться двойным звездным диском. На долю внутреннего диска, который имеет по вертикали не более 500 парсек, приходится 95% звезд дисковой зоны, в том числе все молодые яркие звезды. Его охватывает внешний диск толщиной в полторы тысячи парсек, где обитают звезды постарше. Газовый (точнее, газо-пылевой) диск Млечного Пути имеет в толщину не менее 3,5 килопарсек. Четыре спиральных рукава диска представляют собой области повышенной плотности газо-пылевой среды и содержат большинство самых массивных звезд.

Диаметр гало Млечного Пути не менее, чем вдвое больше диаметра диска. Там обнаружено порядка 150 глобулярных кластеров, причем, скорее всего, еще с полсотни пока не открыты. Возраст старейших кластеров превышает 13 миллиардов лет. Гало заполнено темной материей, имеющей комковатую структуру.

До недавнего времени полагали, что гало почти шарообразно, однако, по последним данным, оно может быть значительно приплюснуто. Общая масса Галактики может составлять до 3 триллионов солнечных масс, причем на долю темной материи приходится 90−95%. Масса звезд Млечного Пути оценивается в 90−100 миллиардов масс Солнца.

Эллиптическая галактика, как и следует из ее названия, имеет форму эллипсоида. Она не вращается как целое и потому не обладает осевой симметрией. Ее звезды, которые в основном имеют сравнительно небольшую массу и солидный возраст, обращаются вокруг галактического центра в разных плоскостях и иногда не по отдельности, а сильно вытянутыми цепочками.

Новые светила в эллиптических галактиках загораются редко в связи с дефицитом исходного сырья — молекулярного водорода.

Подобно людям, галактики объединяются в группы. Наша Местная группа включает две самые крупные галактики в окрестностях размером порядка 3 мегапарсек — Млечный путь и Андромеду (M31), галактику Треугольника, а также их спутники — Большое и Малое Магеллановы облака, карликовые галактики в Большом Псе, Пегасе, Киле, Секстанте, Фениксе, и еще множество других — всего числом около полусотни. Местная группа в свою очередь является членом местного сверхскопления Девы.

Как самые крупные, так и самые мелкие галактики относятся к эллиптическому типу. Общая доля его представителей в галактическом населении Вселенной всего около 20%. Эти галактики (возможно, за исключением самых мелких и тусклых) также скрывают в своих центральных зонах сверхмассивные черные дыры. Эллиптические галактики имеют и гало, но не столь четкие, как у дисковидных.

Все прочие галактики считаются иррегулярными. Они содержат много пыли и газа и активно порождают молодые звезды. На умеренных расстояниях от Млечного Пути таких галактик немного, всего-то 3%.

Однако среди объектов с большим красным смещением, чей свет был испущен не позже, чем через 3 млрд лет после Большого взрыва, их доля резко возрастает. Судя по всему, все звездные системы первого поколения были невелики и обладали неправильными очертаниями, а крупные дисковидные и эллиптические галактики возникли гораздо позже.

Магеллановы облака – не неправильные галактики!

Магеллановы облака (Большое и Малое) являются ближайшими спутниками нашей Галактики. Расположены они оба в Южном полушарии неба в созвездии Золотой Рыбы. Впервые были описаны Антонио Франческо Пигафетта — одним из участников кругосветного путешествия Магеллана, отсюда и их название.

Оба они (плюс наша Галактика) благодаря сближению образуют как бы тройную галактическую систему: друг с другом и, по-видимому, с нашей Галактикой, эти галактики связаны газовой перемычкой. Расстояния до них составляют 52 и 63 кпс соответственно. Большое Магелланово Облако имеет длину 12 кпс, а Малое – 4 кпс. Скорости их относительно центра нашей галактики составляют +40 (БМО) и -15 (ММО) км/сек. Определенная по вращению масса Большого Магелланова облака в 15 раз меньше, чем масса Млечного пути.

Большое и малое магеллановы облака на южном небе

Долгое время именно магеллановы облака считались хорошим примером “неправильной галактики”, однако в последующем, было уточнено:

  • Малое Магелланово облако представляет собой неправильную карликовую галактику I-го типа. В прошлом, вероятно, оно имело скорее всего спиральную форму, но под действием гравитации Млечного пути её потеряло.
  • Большое Магелланово облако в целом имеет такую же судьбу, как и малое, но так как оно больше по размерам, то и первоначальную форму сохранило лучше, поэтому все ещё может быть отнесена к IV-му типу спиральных галактик в последовательности Хаббла (SB(s)m).

Александр Фролов, для сайта starcatalog.ru, компиляция на основе российских и зарубежных источников сети интернет, находящихся в открытом доступе

Невидимая сила

Невидимая и прожорливая: сверхмассивная чёрная дыра глазами художника

Возможно, причина постоянного голода кроется в устройстве самих галактик, обладающих огромным притяжением. Ведь каждая из них сама образуется вокруг мощнейшего источника гравитации. В центре большинства галактик находится сверхмассивная чёрная дыра — небесное тело с притяжением такой силы, что его не могут покинуть ни вещество, ни излучение. К примеру, в центре Млечного пути находится чёрная дыра, масса которой составляет от двух до пяти миллионов масс Солнца. И это ещё далеко не рекорд.

Досконально исследовать, как образуются сверхмассивные чёрные дыры, учёным ещё предстоит. Сейчас они могут лишь относительно точно определять их наличие, наблюдая за центром галактик в радио- и инфракрасном диапазонах. Однако есть признак, который явно указывает на то, что в галактике есть чёрная дыра. Это квазар.

На пути этого луча лучше не попадаться

Считается, что квазары возникают в результате слияния галактик. Сверхмассивные чёрные дыры в центрах галактик притягивают звёзды с такой алчностью, что вокруг них образуется квазар, который излучает в миллионы раз больше энергии, чем самые яркие звёзды. Эти выбросы настолько сильны, что сопровождающие их вспышки легко заметны даже в видимом спектре. Квазары испускают радиоволны, инфракрасные, ультрафиолетовые, рентгеновские и гамма-лучи невероятной силы.

Влияние чёрных дыр прослеживается и в жизнедеятельности ещё одной разновидности галактик — сейфертовских, названных по имени исследователя Карла Сейферта. Их характерный признак — активное ядро, спектр излучения которого содержит множество ярких широких полос. Эти полосы вызваны мощными выбросами газа из ядра, который движется со скоростью до нескольких тысяч километров в секунду. Сейфертовские галактики обычно бывают неправильными или спиральными.

Благодаря «выхлопам» ядра у NGC 1097 появились новые районы звездообразования

Однако чёрные дыры, квазары и блазары — не единственные составляющие галактик, которые вызывают у учёных множество вопросов. Не менее таинственной остаётся тёмная материя. О самом её существовании учёные догадались лишь из-за аномально высокой скорости, с которой вращаются периферические области галактик. Тёмная материя практически невидима, так как не испускает электромагнитное излучение и не взаимодействует с ним, зато оказывает очень сильное гравитационное воздействие, во много раз большее, чем материя видимая. К примеру, эллиптическую галактику NGC 1132 окружает огромное гало из тёмной материи, масса которого в тысячи раз больше самой галактики.

Влияние тёмной материи особенно хорошо заметно в галактических скоплениях. Это стало известно в ходе опытов с гравитационным линзированием. В основе этих опытов лежит тот факт, что любая масса деформирует пространство, искажая лучи света подобно линзе. Возникающее в скоплении галактик искажение настолько велико, что его легко заметить.

Гигантское космическое увеличительное стекло

Кроме того, без тёмной материи не могли бы образоваться галактики. Одного притяжения фрагментов материи, возникшей после Большого Взрыва, для этого бы не хватило. По большому счёту, тёмная материя различных типов составляет 95% массы Вселенной. Она удерживает вместе существующие галактические сообщества и заполняет пространство между ними.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector