Звезда

Содержание:

Крупнейшая из известных?

Сверхгигант UY Щита с некоторой оговоркой можно назвать самой крупной звездой из наблюдаемых в наши дни. Почему «с оговоркой» будет сказано ниже. UY Щита удалён от нас на 9500 световых лет и наблюдается как тусклая переменная звёздочка, различимая в небольшой телескоп. По оценкам астрономов, её радиус превышает 1700 радиусов Солнца, а в период пульсации этот размер может увеличиться до целых 2000.

Получается, помести такую звезду на место Солнца, нынешние орбиты планеты земной группы оказались бы в недрах сверхгиганта, а границы её фотосферы временами упирались бы в орбиту Сатурна. Если представить нашу Землю как гречневую крупицу, а Солнце – арбуз, то диаметр UY Щита будет сопоставим с высотой Останкинской телебашни.

Чтобы облететь такую звезду со скоростью света понадобится целых 7-8 часов. Вспомним, что свет, испущенный Солнцем, доходит до нашей планеты всего за 8 минут. Если лететь с той же скоростью, с какой МКС за полтора часа совершает один оборот вокруг Земли, то полёт вокруг UY Щита продлится почти пять лет. Теперь представим эти масштабы, учитывая, что МКС летит в 20 быстрее пули и в десятки раз – пассажирских авиалайнеров.

Сравнительные размеры звезд

Астрономы оценивают величину звёзд по шкале, согласно которой, чем ярче звезда, тем меньше её номер. Каждый последующий номер соответствует звезде, в десять раз менее яркой, чем предыдущая. Самой яркой звездой ночного неба во Вселенной является Сириус. Его видимая звёздная величина составляет -1.46, а это значит, что он в 15 раз ярче звезды с нулевой величиной.

Звёзды, чья величина составляет 8 и более невозможно увидеть невооружённым взглядом. Звёзды также разделяются по цветам на спектральные классы, указывающие на их температуру. Существуют следующие классы звёзд Вселенной: O, B, A, F, G, K, и M.

Классу О соответствуют самые горячие звёзды во Вселенной– голубого цвета. Самые холодные звёзды относятся к классу М, их цвет красный.

Класс Температура,K Истинный цвет Видимый цвет Основные признаки
O голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Вопреки всеобщему заблуждению, стоит отметить, что звёзды Вселенной на самом деле не мерцают. Это лишь оптический обман – результат атмосферной интерференции. Похожий эффект можно наблюдать жарким летним днём, глядя на раскалённый асфальт или бетон.

Горячий воздух поднимается, и кажется, будто вы смотрите сквозь дрожащее стекло. Тот же процесс вызывает иллюзию звёздного мерцания. Чем ближе звезда к Земле, тем больше она будет «мерцать», потому  что её свет проходит через более плотные слои атмосферы.

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.

Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

30 интересных вещей о Японии (Спойлер: особенно нас привлекло нетающее мороженое)

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

ПЛАНЕТА ЗЕМЛЯ

Есть одна планета-сад

В этом космосе холодном.

Только здесь леса шумят,

Птиц скликая перелетных,

Лишь на ней одной цветут

Ландыши в траве зеленой,
И стрекозы только тут

В речку смотрят удивленно…

Береги свою планету —

Ведь другой, похожей, нету!

(Я. Аким)
Вокруг Солнца обращаются планеты, которые составляют Солнечную систему. Самая красивая и самая интересная из планет — это наша Земля. Вот так выглядит Земля из космоса — недаром ее называют «голубой планетой».

Земля — единственная планета в Солнечной системе, на которой существует жизнь. Земля образовалась одновременно с другими планетами Солнечной системы около 4,5 миллиардов лет назад. Жизнь на Земле возможна потому, что у нашей планеты есть плотная атмосфера, в которой присутствует кислород. Атмосфера появилась на Земле миллиарды лет назад в результате извержений вулканов.

Если бы на Земле не было бы атмосферы, температура в разных точках планеты колебалась бы от +160 до -100 градусов. Ни одно живое существо не выдержало бы такие перепады.

На Земле разнообразный климат. В тропических лесах на экваторе жарко и влажно, а на полюсах очень холодно.

Большую часть нашей планеты (три четверти) занимают моря и океаны, поэтому ее правильнее было бы назвать планетой Океан. Самая глубокая точка мирового океана — Марианская впадина. Она расположена на глубине больше 11 километров. А самая высокая гора — Эверест в Гималаях. Она немного не дотянула до 9 километров. В нашей стране самой высокой горой является Эльбрус на Северном Кавказе. . ‘ »

В центре Земли находится твердое металлическое ядро. Выше лежит слой расплавленных пород — мантия. Поверхность Земли состоит из земной коры, ее толщина колеблется от 6 до 40 километров. Кора сложена из платформ, которые постоянно движутся по верхней мантии. На границах плит часто происходят землетрясения и извержения вулканов. На заре истории Земли, когда наша планета еще не успела достаточно остыть, на ней извергались тысячи вулканов, а пласты земли постоянно передвигались. Сейчас вулканические извержения и землетрясения происходят не так часто.

Характеристики

Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.

Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.

Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.

Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.

Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.

Рекомендации по подбору материала и варианта опоры

Выбирая материал и конструкционное решение шпалерного устройства, нужно руководствоваться рядом моментов:

  1. Весом. Материалы лучше использовать лёгкие – с ними проще работать.
  2. Габаритами. Зависят от вида шпалеры.
  3. Жёсткостью. Материал обязан быть жёстким, не гнуться – только так опора выдержит лозу.
  4. Долговечностью. Наиболее долго прослужит металлическая опора, быстрее придёт в негодность – деревянная.
  5. Размерами сада. При ограниченной площади территории лучше установить одно- или двухплоскостные конструкции.
  6. Финансовыми возможностями. Причём рекомендуется не экономить, а сразу возвести качественную шпалеру.

Белые звезды – звезды белого цвета

Фридрихом Бесселем, который руководил Кенигсбергской обсерваторией, в 1844 году было сделано интересно открытие. Ученый заметил малейшее отклонение наиболее яркой звезды неба – Сириуса, от своей траектории по небосводу. Астроном предположил наличие у Сириуса спутника, а также рассчитал примерный период вращения звезд вокруг их центра масс, который составил около пятидесяти лет. Бессель не нашел должной поддержки от других ученых, т.к. спутник никто не смог обнаружить, хотя по своей массе он должен был быть сопоставим с Сириусом.

И только через 18 лет Альваном Грэхэмом Кларком, который занимался тестированием наилучшего телескопа тех времен, рядом с Сириусом была обнаружена тусклая белая звезда, которая и оказалась его спутником, получившим название Сириус В.

Поверхность этой звезды белого цвета разогрета до 25 тыс. Кельвинов, а ее радиус маленький. Учитывая это, ученые сделали вывод о высокой плотности спутника (на уровне 106 г/см3, при этом плотность самого Сириуса приблизительно составляет 0,25 г/см3, а Солнца – 1,4 г/см3). Через 55 лет (в 1917 году) был открыт еще один белый карлик, получивший название в честь ученого, обнаружившего его – звезда ван Маанена, которая находится в созвездии Рыб.

Малиновая звезда

В 1845 году английский астроном Джон Хайнд (1823-1895) открыл в созвездии Зайца переменную звезду. В пике блеска её можно увидеть даже невооружённым глазом, а при наблюдении в телескоп в Омикрон Лебедя — яркая и легкодоступная для наблюдения в бинокль тройная звезда это время хорошо заметен малиновый оттенок. Впоследствии её так и назвали — Малиновая звезда Хайнда. Она, как и гранатовые, имеет невысокую по меркам звёзд температуру (около 2300 градусов Цельсия), а малиновый оттенок ей придаёт выбрасываемый углерод, который не пропускает синюю линию спектра. Увидеть малиновый цвет звезды не так просто: пика блеска она достигает примерно каждые 424 дня, оставаясь там в течение 10-15 дней. Однако в это время звезда может находиться на небесной сфере вблизи Солнца, либо пик блеска может прийтись на ночи вблизи полнолуния, когда яркий свет нашего спутника создаёт помеху для наблюдения цвета. Да и погода может преподнести неприятный сюрприз, закрыв небо облаками. Существует у этой звезды и загадка. Примерно раз в сорок лет она меняет величину блеска в сто раз. Во время пика блеска в этот период она видна только в крупные инструменты, а в минимуме блеска доступна только инструментам, оборудованным специальными приборами для регистрации слабых звёзд. Последний раз такое понижение яркости наблюдалось в 90-х годах XX века, а следующий раз, по прогнозам, произойдёт в 30-е годы нашего столетия. Причины этих изменений до сих пор неизвестны.

Номенклатура, типы и классификация новых звёзд

До 1925 г. новые звёзды именовались в соответствии с номенклатурой переменных звёзд Фридриха Аргеландера 1862 года, то есть имя состояло из буквенного индекса, соответствующего по порядку их открытия в созвездии, и названия созвездия. Так, например, в этой номенклатуре новая 1901 года в созвездии Персея обозначалась как GK Per. С 1925 года новые именуются как переменные звёзды, то есть индексом V, порядковым номером открытия в созвездии и названием созвездия: так, например, новая 1975 года в созвездии Лебедя обозначается как V1500 Cyg.

Неподтверждённые новые обозначают буквами PNV (англ. Possible Nova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Новые звёзды являются подклассом катаклизмических переменных звёзд (англ. Cataclysmic Variable, аббр. CV). Выделяют классические новые с большим периодом между вспышками и повторные новые с относительно частой повторяемостью вспышек.

  • Na — быстрые новые, англ. rapid novae, представитель GK Per
  • Nb — медленные новые, англ. slow novae
  • Nc — предельно медленные новые, англ. extremely slow novae, представитель RT Ser
  • NR — повторные новые, англ. recurrent novae.

Новые ярче 6 зв. вел., начиная с 1890

Год Новая Максимум блеска
T Aurigae 3,8
V1059 Sagittarii 4,5
V606 Aquilae 5,5
GK Persei 0,2
Nova Lacertae 1910 4,6
Nova Geminorum 1912 3,5
V603 Aquilae −1,8
Nova Cygni 1920 2,0
RR Pictoris 1,2
DQ Геркулеса 1,4
CP Lacertae 2,1
BT Monocerotis 4,5
CP Puppis 0,3
DK Lacertae 5,0
V446 Herculis 2,8
V533 Herculis 3,0
FH Serpentis 4,0
V1500 Cygni 2,0
QU Vulpeculae 5,2
V842 Centauri 4,6
V838 Herculis 5,0
V1974 Cygni 4,2
V1494 Aquilae 5,03
V382 Velorum 2,6
V1280 Scorpii 3,75
V339 Дельфина 4,3
V1369 Центавра 3,3
Новая Стрельца 2015 4,0
SMCN 2016-10a -10.5

Повторные новые

Повторные новые — класс новых звёзд, которые наблюдались в нескольких мощных вспышках c интервалом между вспышками в несколько десятков лет, при которых яркость звезды увеличивается в среднем на 10m

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Этапы эволюции звезды

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино.  Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Туманность Эскимоса — один из последних этапов эволюции небольшой звезды

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

История проектирования

Навал «Беззаветного» на крейсер США Йорктаун

Пограничный СКР «Имени XXVII съезда КПСС» (затем «Орел»), морские части погранвойск, 1 марта 1987 года

Проект 1135 был разработан в 1964—1966 годах в Северном проектно-конструкторском бюро. В соответствии с техзаданием, руководство ВМФ ВС СССР планировало получить большой противолодочный корабль II ранга — океанский корабль на базе проектов 1134-А и 1134-Б, но с существенно уменьшенным водоизмещением. Новый проект должен был решать широкий круг задач по противолодочной и противовоздушной обороне соединений кораблей, быть способным проводить конвои через районы локальных боевых действий.

Уменьшение водоизмещения привело к отказу от вертолёта, гидроакустическое оснащение было идентичным проекту 1134-Б, но недостаточным для стрельбы ракетами главного калибра на полную дальность, поэтому предполагалось действие кораблей поисково-ударными парами.

Первоначально основным вооружением корабля был ракето-торпедный комплекс «Метель», предназначенный для уничтожения подводных лодок. При модернизациях он заменялся на «Раструб-Б», способный поражать также и надводные цели.

Типы карликовых светил

Стоит отметить, что все объекты класса обладают небольшим размером, но могут отличаться другими характеристиками. Поэтому звезды карлики поделили на типы и разновидности.

Звёзды в космосе

Звезды белые карлики

Между прочим, белый карлик это потухшая и остывающая звезда. Другими словами, тело, находящееся на конечном этапе эволюции. Несмотря на то, что по размеру они похожи с нашей планетой, масса примерно такая же, как солнечная. Причем данный тип относится к спектральному классу А.Как вы считаете, какая звезда превращается в белый карлик и чем отличаются белые карлики от обычных звезд?По сути, звёздное тело малой и средней величины может превращаться в данный тип. Но только на завершающей стадии своего жизненного цикла. Это, так называемые вырожденные звёзды. В них давление вырожденного газа оказывает сопротивление гравитации. Кстати, именно поэтому структура белых карликов отличается от остальных светил. Поскольку высокое давление оказывает прямое воздействие на атомы. Можно сказать, что при таких условиях возникает гравитационный коллапс. В результате формируется сильно сжатая и плотная структура из атомного ядра и электронов.Правда, давление вырожденного газа не позволяет коллапсу продолжаться. И таким образом происходит превращение объекта в белое карликовое светило. Но при условии, что его масса не более солнечной в 1,4 раза. Если же она больше, то образуется нейтронная звезда.

Белый карлик

Какие звезды называют желтыми карликами?

На самом деле, желтый карлик представляет собой тип звёздных тел главной последовательности, которые относятся к спектральному классу G. По оценке учёных, их масса может быть от 0,8 до 1,2 солнечных масс.После того, как в них сгорает весь водород, жёлтая карликовая звезда расширяется и превращается в красный гигант.

Солнце (жёлтый карлик)

Оранжевые карликовые светила

Еще один тип главной последовательности звёзд малого размера и спектрального класса К. Их масса колеблется от 0,5 до 0,8 массы Солнца, а длительность жизни выше нашего главного светила.Можно сказать, что оранжевые представители находятся где-то между жёлтыми и красными собратьями.

Красные карлики

Итак, звезда красный карлик представляет собой небольшое тело с невысоким значением массы. В результате для таких космических объектов характерны низкая температура и слабый уровень светимости. Собственно говоря, по этой причине они не видны с Земли без применения специальных приборов.На диаграмме Герцшпрунга-Рассела находятся в самом низу. Главным образом, они относятся к позднему спектральному классу, чаще всего к классу М.Что интересно, наша галактика Млечный Путь богата именно на красных карликовых звёзд. По оценке астрономов, на их долю приходится до 80% всех астрономических тел в пределах нашей галактической системы.

Проксима Центавра (красный карлик)

Коричневые представители

И наконец, коричневый карлик — звезда со слабой яркостью (класс Т). Поскольку при их формировании начальная масса небольшая. Из-за чего внутри них нет ядерных реакций. Они попросту не могут возникнуть. Как оказалось, коричневые светила являются очень холодными объектами.По данным учёных, в них протекают термоядерные реакции синтеза лёгких элементов. К примеру, лития, бора, бериллия. Однако тепловыделение небольшое, поэтому ядерные процессы заканчиваются. А само космическое тело довольно скоро остывает и превращается в объекты, похожие на планеты.

Корчневый карлик

Какие звезды карлики носят названия чёрные или мёртвые

В действительности, черный карлик — небольшое холодное светило, внутри которого отсутствуют какие-либо ядерные реакции. Либо потому что массы не хватило для возникновения этих процессов, либо в ядре сгорело всё топливо и они просто погасли. Во втором случае, их называют умершими или мёртвыми звёздными телами.

Чёрный карлик

Вдобавок, выделяют субкоричневые или коричневые субкарлики. По массе они уступают коричневым карликам. Более того, это совершенно холодные космические объекты.

 Чаще всего их относят к планетам.

Различия звезд по цвету

Существует огромное разнообразие звезд с непередаваемыми цветовыми оттенками. В результате этого даже одно созвездие получило название «Шкатулка с драгоценностями», основу которого составляют голубые и сапфировые звезды, а в самом его центре расположилась ярко светящая оранжевая звезда. Если рассматривать Солнце, то оно имеет бледно-желтый цвет.

Прямым фактором, влияющим на различие звезд по цвету, является температура их поверхности. Объясняется это просто. Свет по своей природе является излучением в виде волн. Длина волны – это расстояние между ее гребнями, является очень маленькой. Чтобы ее себе представить, нужно 1см разделить на 100 тыс. одинаковых частей. Несколько вот таких частичек и будут составлять длину волны света.

Учитывая, что это число получается достаточно маленьким, каждое, даже самое незначительное, его изменение станет причиной, по которой картинка, наблюдаемая нами, поменяется. Ведь наше зрение разную длину световых волн воспринимает в качестве разных цветов. К примеру, синий цвет имеют волны, длина которых в 1,5 раза меньше, чем у красных.

Также практически каждый из нас знает, что температура может оказывать самое прямое влияние на цвет тел. Для примера можно взять любой металлический предмет и положить его на огонь. Во время нагревания он станет красным. Если бы температура огня существенно повышалась, менялся бы и цвет предмета – с красного на оранжевый, с оранжевого на желтый, с желтого на белый, и, наконец, с белого на сине-белый.

Поскольку Солнце имеет температуру поверхности в районе 5,5 тыс. С, то оно является характерным примером желтых звезд. А вот наиболее горячие голубые звезды могут разогревать и до 33 тыс. градусов.

Цвет и температура были связаны учеными при помощи физических законов. Чем температура тела прямо пропорциональна его излучению и обратно пропорциональна длине волн. Волны синего цвета имеют более короткие длины волн в сравнение с красным. Раскаленные газы излучают фотоны, энергия которых прямо пропорциональна температуре и обратно пропорциональна длине волны. Именно поэтому для наиболее горячих звезд характерным является сине-голубой диапазон излучения.

Поскольку ядерное топливо на звездах не безгранично, оно имеет свойство расходоваться, что приводит к остыванию звезд. Поэтому звезды среднего возраста имеют желтый цвет, а старые звезды мы видим красными.

В результате того что Солнце находится очень близко к нашей планете, можно с точностью описать его цвет. А вот для звезд, которые находятся в миллионе световых лет от нас, задача усложняется. Именно для этого используется прибор, получивший название спектрограф. Сквозь него ученые пропускаю свет, излучаемый звездами, в результате чего можно можно спектрально проанализировать практически любую звезду.

Кроме того, при помощи цвета звезды, можно определить ее возраст, т.к. математические формулы позволяют использовать спектральный анализ для определения температуры звезды, по которой легко вычислить ее возраст.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело — цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

История исследований

За 2200 лет (532 г. до н. э. — 1690 г. н. э.) в китайских и японских летописях было выявлено около 90 вспышек новых. После изобретения телескопа (1609 г.) и до вспышки Эта Киля (1843 г.) европейские учёные заметили всего 5 вспышек новых звезд. Со второй половины XIX века вспышки новых обычно открывали ежегодно. Уильям Хаггинс в 1866 году впервые выполнил спектроскопические наблюдения новой звезды (новой Северной Короны 1866) и обнаружил наличие вокруг неё газовой оболочки, светящейся в линиях водорода. В XX веке было только 5 лет, в течение которых не было замечено ни одной вспышки новых: 1908, 1911, 1923, 1965 и 1966 года. В XXI веке традиционно за год открывается до 10 вспышек новых. Блеск большинства новых превышает 12 зв. вел., но редко оказывается выше 6 зв. вел. В данный момент профессиональными астрономами реализуется проект «E-Nova Project» по всеволновому исследованию вспышек новых звезд. Любители астрономии также активно наблюдают этот тип объектов.

Назначение

Предназначен для поражения надводных кораблей различных классов и типов из состава десантных соединений, конвоев, корабельных и авианосных ударных групп, а также одиночных кораблей и наземных радиоконтрастных целей в условиях интенсивного огневого и радиоэлектронного противодействия.

БРПК «Бастион» является одним из носителей ракеты «Оникс», которая, в свою очередь, наравне с ракетными комплексами «Калибр» и Х-35 «Уран» и перспективной гиперзвуковой противокорабельной ракетой «Циркон», является основным противокорабельным ракетным оружием в Вооруженных Силах России.

СУРСКИЙ ДОКТОР

Дежурный по контрольно-пропускному пункту

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector