Антивещество: прорыв в физике или угроза всем живущим?

Почему происходит аннигиляция при контакте с веществом?

В чем сходство и различие вещества и антивещества

Антивещество – вещество, состоящее из атомов, ядра которых имеют отрицательный электрический заряд и окружены позитронами – электронами с положительным электрическим зарядом. В противоположность этому, в “обычном” веществе, из которого построен окружающий нас мир, положительно заряженные ядра окружены отрицательно заряженными электронами.

Обычное вещество, чтобы отличать его от антивещества, иногда называют койновеществом (от греч. койнос – обычный). Однако в русской литературе этот термин практически не употребляется. Следует подчеркнуть, что термин «антивещество» не совсем правилен, поскольку антивещество – тоже по сути вещество. Просто другое, можно сказать – разновидность вещества. Во всем остальном, оно обладает те ми же инерционными свойствами и создает такое же гравитационное притяжение, как и обычное вещество.

Вещество и антивещество во вселенной – противоположности куда большие, чем огонь и вода.

Говоря о веществе и антивеществе, логично начать с элементарных (субатомных) частиц. Каждой элементарной частице соответствует античастица; обе имеют почти одинаковые характеристики, за исключением того, что у них противоположный электрический заряд. Если частица нейтральна, то античастица также нейтральна, но они могут различаться другими характеристиками. В некоторых случаях частица и античастица тождественны друг другу.

Так, электрону – отрицательно заряженной частице – соответствует позитрон, а античастицей протона с положительным зарядом является отрицательно заряженный антипротон. Позитрон был открыт в 1932, а антипротон – в 1955; это были первые из открытых античастиц. Существование античастиц было предсказано в 1928 на основе квантовой механики английским физиком П.Дираком.

Как получить антиматерю?

Рождение античастиц обычно происходит при образовании пар частица-античастица. В лабораторных условиях этого добиваются на ускорителях или в экспериментах с лазерами. В природных условиях – в пульсарах и около чёрных дыр, а также при взаимодействии космических лучей с некоторыми видами вещества. Выше мы говорили, что антивещество не образуется в природе – так оно и есть. Антивещество должно состоять из античастиц, но они не объединяются в него, то есть мы не видим, например, антизвёзд или антипланет.

Для примера возьмём атом водорода, который является простейшим веществом, состоящим из одного протона, определяющего ядро, и электрона, который вращается вокруг него. Так вот антиводород – это антивещество, атом которого состоит из антипротона и вращающегося вокруг него позитрона.

Звучит довольно просто, вот только синтезировать антиводород – крайне сложная задача. Впервые целых 9 атомов такого антивещества физикам удалось создать в 1995-м году на ускорителе LEAR в ЦЕРНе. Правда просуществовали они до распада всего 40 наносекунд.

Работа продолжалась и специалистами была придумана и создана магнитная ловушка, которая удержала 38 атомов антиводорода в течение 172 миллисекунд (0,172 секунды), а после 170 000 атомов антиводорода, что по массе около 10^-18 грамм. Это самый настоящий успех.

Цена антиматерии — стоимость создания антивещества

Согласно расчётам NASA, создание одного миллиграмма позитронов будет стоить около $25 миллионов, а 1 г антиводорода оценивается в $62,5 триллиона.

За 10 лет в экспериментах ЦЕРНа использован один нанограмм антивещества и его стоимость оценивается в несколько сотен миллионов долларов. Не стоит пугаться таким суммам, ведь, например, компьютер в семидесятые годы прошлого столетия, когда запускали «Вояджеры», эквивалентный по мощности современному мобильнику, стоил несколько десятков миллионов долларов.

Все антипротоны, созданные на ускорителе частиц Тэватроне в Лаборатории Ферми, едва ли наберут 15 нанограммов. В CERN на сегодняшний день произвели только порядка 1 нанограмма. В DESY в Германии — не больше 2 нанограммов позитронов.

Если вся антиматерия, созданная людьми, аннигилирует мгновенно, ее энергии не хватит даже на то, чтобы вскипятить чашку чая.

Проблема заключается в эффективности и стоимости производства и хранения антивещества. Создание 1 грамма антиматерии требует порядка 25 миллионов миллиардов киловатт-часов энергии и стоит выше миллиона миллиарда долларов. Неудивительно, что антивещество иногда включают в список десяти самых дорогих веществ в нашем мире.

Антиматерия рядом с нами

Небольшие количества антиматерии постоянно проливаются дождем на Землю в виде космических лучей, энергетических частиц из космоса. Эти частицы антивещества достигают нашей атмосферы с уровнем от одной до более сотни на квадратный метр. Ученые также располагают свидительствами того, что антивещество рождается во время грозы.

Есть и другие источники антивещества, которые находятся ближе к нам. Бананы, например, вырабатывают антивещество, испуская один позитрон — антивещественный экивалент электрона — примерно раз в 75 минут. Это происходит потому, что бананы содержат небольшое количество калия-40, встречающегося в природе изотопа калия. При распаде калия-40 иногда рождается позитрон.

Наши тела тоже содержат калий-40, а значит, и вы излучаете позитроны. Антиматерия аннигилирует мгновенно при контакте с материей, поэтому эти частицы антивещества живут не очень долго.

Есть ли во Вселенной объекты, состоящие из антиматерии?

Если и есть, то очень мало. Убедительных доказательств существования больших объектов, состоящих из антиматерии, нет.

Фантасты рассматривают аннигиляцию как идеальный способ получения энергии. Сейчас на получение антиматерии уходит намного больше энергии, чем потом дает аннигиляция.

Есть проекты фотонных двигателей, можно представить электростанции, но это все пока из области фантастики. Принципиально все понятно, а реализовать на практике ученым пока не удалось.

Использование антиматерии

Где может быть использована антиматерия? В первую очередь антиматерия – это отличное топливо. Всего одна капля антивещества способна дать энергию, которой будет достаточно для энергообеспечения крупного города в течение суток. Кроме того, этот источник энергии является экологически чистым.

В области медицины основное использование антиматерии – это томография позитронного излучения. Гамма-лучи, которые возникают в результате аннигиляции вещества и антивещества, используются для обнаружения раковых опухолей в организме. Также используют антивещество в терапии против раковых заболеваний. В настоящее время ведутся исследования по использованию антипротонов для полного уничтожения раковых тканей.

Как светит солнце?

Древние мыслители думали, что поверхность солнца постоянно горит, и поэтому излучает свет и тепло. Однако это не так. Во-первых, причина излучения тепла и света находится намного глубже поверхности звезды, а именно в ядре. Ну и во-вторых, процессы происходящие в недрах звезд вовсе не похожи на горение.

Солнце содержит огромное количество атомов водорода.

Суть термоядерной реакции

Как правило, нейтральный атом водорода содержит положительно заряженный протон и отрицательно заряженный электрон, который вращается вокруг него. Когда этот атом встречается с другим атомом водорода, их соответствующие внешние электроны магнитно отталкивают друг друга, что предотвращает встречу одного из протонов друг с другом.

Но ядро Солнца сильно разогрето и находится под таким давлением, что атомы перемещаются с большой кинетической энергией, которая позволяет им преодолевать силу, связывающую их структуру, и электроны начинают отделяться от своих протонов.

Это означает, что протоны, обычно находящиеся внутри ядра атома водорода, могут касаться друг друга и объединяются в ядра других элементов.

То есть с научной точки зрения, — это реакция, при которой более легкие атомные ядра — обычно изотопы водорода (дейтерий и тритий) сливаются в более тяжелые ядра — гелия.

Данный процесс, происходящий в недрах звезд, называется термоядерный синтез.

Термоядерная реакция

Это процесс перехода материи в энергию, причем из минимального количества материи высвобождается невероятное количество энергии — каждую секунду Солнце излучает 3,828⋅1026 Вт мощности.

Чтобы произошла термоядерная реакция необходима невероятно высокая температура — несколько миллионов градусов.

Как можно было догадаться солнце не вечно, оно со временем «спалит само себя». Ученые считают, что в нем еще хватит материи приблизительно на 4-6 миллиардов лет, т.е. где-то на столько же, сколько оно уже просуществовало.

История открытия антиматерии

Антиматерия была открыта в 1932 году североамериканским физиком Карлом Андерсеном, который изучал космические лучи и смог обнаружить позитрон (античастица электрона). Благодаря этому открытию он получил Нобелевскую премию в 1936 году. Впоследствии были экспериментально открыты антипротоны. Это произошло в 2006 году благодаря запуску спутника «Памела», миссией которого было изучение частиц, испускаемых Солнцем.

Впоследствии человечество научилось самостоятельно создавать антиматерию. В результате многих экспериментов было показано, что столкновение материи и антиматерии уничтожает обе субстанции и порождает гамма-лучи. Эти экспериментальные выводы были предсказаны еще Альбертом Эйнштейном.

Лететь на край Вселенной!

А ведь захочется лететь максимально быстро! Да, чем мощнее будут взрывы, тем быстрее будет двигаться корабль. Но при этом будет больше радиации и рисков для членов экипажа. И это обстоятельство весьма разочаровывает энтузиастов использования антивещества.

Возможно, когда-нибудь в будущем мы выясним, как управлять антивеществом. И как производить его в нужных количествах совсем недорого. Но для этого ученым и инженерам нужны средства. Чтобы проводить множество тестов и сотни экспериментов. Самый большой вопрос состоит в том, кто будет платить за проведение такого рода исследований?  Совершенно ясно, что потребуются десятилетия, если не столетия, чтобы настоящий космический полет с использованием антивещества состоялся. И, скорее всего, создателями подобной технологии будет двигать желание улучшить наш мир. В далеком-далеком будущем. А никак не жажда получения прибыли вот прямо сразу. Через три-пять лет.

Хотя, на самом деле, никто не знает, какие побочные результаты могут возникнуть при проведении подобных экспериментов. Ведь они могут оказаться очень прибыльными и начать приносить отдачу от инвестиций всего через несколько лет.

Люди на самом деле изучают, как оснастить космический аппарат топливом на антивеществе

Совсем немного антиматерии может произвести огромное количество энергии, что делает ее популярным топливом для футуристических кораблей в научной фантастике.

Движение ракеты на антивеществе гипотетически возможно; основным ограничением является сбор достаточного количества антивещества, чтобы это могло осуществиться.

Пока не существует технологий для массового производства или сбора антивещества в объемах, необходимых для такого применения. Однако ученые ведут работы над имитацией такого движения и хранения этого самого антивещества. Однажды, если мы найдем способ произвести большое количество антивещества, их исследования могут помочь межзвездным путешествиям воплотиться в реальности.опубликовано econet.ru

Комментарии

  1. 6 — Военно-морской флаг,7 — Гвардейский Военно-морской флаг,8 — Орденский Военно-морской флаг,9 — Гвардейский Орденский Военно-морской флаг.
  2. Скорее всего, до 1703 года, когда на новом фрегате, получившем название «Штандарт», был поднят штандарт, представлявший собой жёлтое полотнище с двуглавым чёрным орлом, держащим морские карты с изображением Белого, Каспийского и Азовского морей — см. , С. 40; , С. 53−54.
  3. В связи с наличием фотографий сохранившегося флага (см. ниже) — реконструкция флага в , Рис. 4, С. 11. вызывает определённые вопросы. Скорее всего <ввиду отсутствия на тот момент вексиллографической традиции>, лицевая сторона флага расположена слева от «древка».

Серийное производство

Описание и назначение

Действующим Корабельным уставом ВМФ Российской Федерации установлено:

Глава 15:

Из истории вопроса

Впервые допустил мысль о существовании материи «с другим знаком» британский ученый Артур Шустер еще в конце XIX века. Его публикация на эту тему была довольно туманной и не содержала никакой доказательной базы, скорее всего, на гипотезу ученого натолкнуло недавнее открытие электрона. Он же первым ввел в научный обиход термины «антивещество» и «антиатом».

Экспериментально антиэлектрон был получен еще до своего официального открытия. Это удалось сделать советскому физику Дмитрию Скобельцину в 20-е годы прошлого столетия. Он получил странный эффект при исследовании гамма-лучей в камере Вильсона, но объяснить его так и не смог. Теперь мы знаем, что феномен был вызван появлением частицы и античастицы – электрона и позитрона.

В 1930 году известный британский физик Поль Дирак, работая над релятивистским уравнением движения для электрона, предсказал существование новой частицы с той же массой, но противоположным зарядом. В то время ученые знали только одну положительную частицу – протон, однако она была в тысячи раз тяжелее электрона, поэтому интерпретировать данные, полученные Дираком, так и не смогли. Двумя годами позже американец Андерсон обнаружил «двойника» электрона при исследовании излучения из космоса. Он получил название позитрон.

https://youtube.com/watch?v=g-BswhMnFp8

К середине прошлого столетия физики успели неплохо изучить эту античастицу, было разработано несколько способов ее получения. В 50-е годы ученые открыли антипротон и антинейтрон, в 1965 году был получен антидейтрон, а в 1974 году советским исследователям удалось синтезировать антиядра гелия и трития.

В 60-е и 70-е годы античастицы в верхних слоях атмосферы искали с помощью воздушных шаров с научной аппаратурой. Этой группой руководил нобелевский лауреат Луис Альварец. Всего было «поймано» около 40 тыс. частиц, но ни одна из них к антиматерии не имела никакого отношения. В 2002 году аналогичными изысканиями занялись американские и японские физики. Они запустили огромный воздушный шар BESS (объем 1,1 млн м3) на высоту в 23 километра. Но и им за 22 часа эксперимента не удалось обнаружить даже простейших античастиц. Позже аналогичные опыты были проведены в Антарктиде.

В середине 90-х европейским ученым удалось получить атом антиводорода, состоящий из двух частиц: позитрона и антипротона. В последние годы удалось синтезировать значительно большее количество этого элемента, что позволило продвинуться в изучении его свойств.

Для «ловли» античастиц используются даже космические аппараты

В 2005 году чувствительный детектор антивещества был установлен на Международной космической станции (МКС).

Ссылки

  • Л. Н. Токарь, М. В. Разыграев. Судовые флаги, вымпелы и флюгарки. 1700—2006 гг. — М.: Фонд «Русские витязи», 2007. 580 с. ISBN 978-5-903389-02-5

Антиматерия

Рубрики Все статьи,Физика, автор Админ — Янв 10, 2012

Антиматерия – это материя, состоящая из античастиц, то есть частиц  с точно такими же, но обратными по значению электрическими и магнитными свойствами тех частиц, противоположностями которых они являются. Каждая частица обладает своей зеркальной копией – античастицей. Античастицы протона, нейтрона и электрона называются антипротоном, антинейтроном и позитроном, соответственно. Протоны и нейтроны, в свою очередь, состоят из еще более меньших частиц, называемых кварками. Антипротоны и антинейтроны состоят из антикварков.

Античастицы переносят аналогичный, но противоположный по значению заряд, как и их прототипы из обычной материи, но обладают той же массой и похожи на них во всех других отношениях. Как предполагают ученые, во Вселенной могут существовать целые галактики из антиматерии. Также есть мнение, что антивещества во Вселенной может быть даже больше, чем обычного вещества. Но увидеть антиматерию невозможно, так же как объекты окружающего нас обычного мира. Она не видима для человеческого зрения.

Большинство астрономов, все же сходятся во мнении, что антивещества все-таки не так уж и много или вообще нет в природе, иначе, как они рассуждают, во Вселенной было бы много мест где обычная материя и антиматерия сталкиваются друг с другом, что сопровождалось бы мощным потоком гамма-лучей, вызванных их аннигиляцией. Аннигиляция – это взаимоуничтожение частиц материи и антиматерии, сопровождающееся выделением энергии. Однако такие регионы не были найдены.

Одна из возможных гипотез возникновения антиматерии связана с теорией большого взрыва. Эта теория утверждает, что вся наша Вселенная возникла в результате взрыва и расширения некой точки в пространстве. После взрыва возникло равное количество материи и антиматерии. Сразу же начался процесс их взаимоуничтожения. Однако по какой-то причине материи оказалось немного больше, что позволило образоваться Вселенной в привычной нам форме.

Из-за отсутствия возможности изучить свойства антиматерии в природе, ученые прибегают к искусственным способам образования антивещества. Для его получения используют специальные научные прибору – ускорители частиц, в которых атомы материи разгоняются до около световой скорости (300 000 км/сек). Сталкиваясь, некоторые частицы разрушаются, в результате чего образуются античастицы, из которых можно получить антиматерию. Сложной проблемой является хранение антивещества, так как, соприкоснувшись с обычной материей, антивещество уничтожается. Для этого полученные крупицы антиматерии помещают в вакуум и в магнитное поле, которое удерживает их в подвешенном состоянии и не дает прикоснуться к стенкам хранилища.

Не смотря на всю сложность получения и исследования антивещества, оно может предоставлять для нашей жизни множество преимуществ. Все они основаны на то факте, что при взаимодействии антиматерии с материей выделяется огромное количество энергии. Причем отношение высвобождаемой энергии к массе участвующего вещества не превзойдена ни одним видом топлива или взрывчатого вещества. В результате аннигиляции нет никаких побочных продуктов, только чистая энергия. Поэтому ученые уже сейчас мечтают об ее применении. Например, об электростанциях на антиматерии с нескончаемым ресурсом. Космические корабли с анигиляторными двигателями смогут пролетать тысячи световых лет на около световой скорости. Военным это даст возможность создать огромную по мощности бомбу, гораздо более разрушительную, чем атомная или водородная бомба. Однако всем этим мечтам не суждено осуществится, пока мы не сможем получать недорогое антивещество в промышленных масштабах.

Теги: анигиляция, антивещество, антиматерия, антинейтрон, антипротон, позитрон, энергия

Янв1

Загадка науки

Материя — это загадка, которую мы пока не можем объяснить. Стандартная модель предсказывает, что когда произошло событие, которое мы называем Большим взрывом, должно было быть создано равное количество вещества и антивещества. Это произошло бы потому, что интенсивная температура и плотность стимулировали бы появление новых частиц в соответствии со знаменитым  уравнением e = mc².

Это уравнение говорит, что материя и энергия взаимозаменяемы. Поэтому можно получить массу из энергии, а энергию из массы. По словам физиков, именно свет стал атомами, из которых состоят наши миры. Эта теория получила распространение в 90-х годах, когда исследователям удалось превратить свет в вещество с помощью излучения. В ходе эксперимента были получены две частицы: вещества и антивещества.

Чтобы понять, что такое антивещество, просто представьте положительное число, а затем его отрицательный аналог. Например, атом водорода имеет аналог, известный как антиводород. Он имеет точно такую ​​же массу. И ведет себя точно так же. Подобно тому, как -5 и 5 встречаются, чтобы произвести 0, так и частицы материи и частицы антивещества встречаются, чтобы аннигилировать и выбросить мощные потоки энергии.

После аннигиляции всех частиц Вселенная должна была быстро остыть. Вся она состояла бы только из излучения.

И все же мы существуем. Это свидетельство того факта, что у не каждой частицы была пары — античастица. Поэтому сегодня существует дисбаланс, известный как барионная асимметрия.

Звездолет Энтерпрайз использует энергию аннигиляции частиц и античастиц

Нормальная материя (хотя на самом деле этот термин относительный) состоит из протонов и электронов. В антивеществе все меняется на антипротоны и позитроны соответственно.

Антиматерия важна для науки

Как же мы оказались в такой ситуации, что Вселенная состоит из большого количества материи и практически не содержит антиматерии, если законы природы абсолютно симметричны между материей и антиматерией? Что ж, есть два варианта: либо Вселенная была рождена с большим количеством материи, нежели антиматерии, либо что-то произошло на ранней стадии, когда Вселенная была очень горячей и плотной, и породило асимметрию материи и антиматерии, которой изначально не было.

Первую идею проверить научно без воссоздания целой Вселенной не получится, но вторая весьма убедительна. Если наша Вселенная каким-то образом создала асимметрию материи и антиматерии там, где изначально ее не было, то правила, которые работали тогда, останутся неизменными и сегодня. Если мы достаточно умны, мы сможем разработать экспериментальные тесты, раскрывающие происхождение материи в нашей Вселенной.

В конце 1960-х годов физик Андрей Сахаров определил три условия, необходимые для бариогенеза или создания большего количества барионов (протонов и нейтронов), чем антибарионов. Вот они:

  1. Вселенная должна быть неравновесной системой.
  2. В ней должны быть C- и CP-нарушение.
  3. Должны быть взаимодействия, нарушающие барионное число.

Первое соблюсти просто, поскольку расширяющаяся и остывающая Вселенная с нестабильными частицами в ней (и античастицами), по определению, будет вне равновесия. Второе тоже просто, поскольку C-симметрия (замена частиц античастицами) и CP-симметрия (замена частиц зеркально отраженными античастицами) нарушаются во множестве слабых взаимодействий с участием странных, очарованных и прекрасных кварков.

Остается вопрос, как нарушить барионное число. Экспериментально мы наблюдали, что баланс кварков к антикваркам и лептонов к антилептонам явно сохраняется. Но в Стандартной модели физики элементарных частиц не существует явного закона сохранения ни для одной из этих величин по отдельности.

Нужно три кварка, чтобы сделать барион, поэтому на каждые три кварка мы назначаем барионное число (B) 1. Точно так же каждый лептон получит лептонное число (L) 1. Антикварки, антибарионы и антилептоны будут иметь отрицательные числа B и L.

Но по правилам Стандартной модели сохраняется только разница между барионами и лептонами. При правильных обстоятельствах вы можете не только создавать дополнительные протоны, но и электроны к ним. Точные обстоятельства неизвестны, но Большой Взрыв дал им возможность реализоваться.

Самые первые этапы существования Вселенной описываются невероятно высокими энергиями: достаточно высокими, чтобы создать каждую известную частицу и античастицу в большом количестве по знаменитой формуле Эйнштейна E = mc2. Если создание и уничтожение частиц работает так, как мы думаем, ранняя Вселенная должна была быть заполненной равным количеством частиц материи и антиматерии, которые взаимно превращались друг в друга, поскольку доступная энергия оставалась чрезвычайно высокой.

Схематичное изображение нестабильных частиц.

По мере расширения и охлаждения Вселенной нестабильные частицы, однажды созданные в изобилии, будут разрушаться. При соблюдении правильных условий — в частности, трех условий Сахаров — это может привести к избытку вещества над антивеществом, даже если изначально его не было. Задача для физиков — создать жизнеспособный сценарий, соответствующий наблюдениям и экспериментам, который может дать вам достаточный избыток вещества над антивеществом.

Существует три основных возможности возникновения этого избытка вещества над антивеществом:

  • Новая физика в электрослабом масштабе может значительно увеличить количество C- и CP-нарушения во Вселенной, что приведет к асимметрии между веществом и антивеществом. Взаимодействия Стандартной модели (через процесс сфалерона), которые нарушают B и L индивидуально (но сохраняют B — L), могут создать нужные объемы барионов и лептонов.
  • Новая физика нейтрино при высоких энергиях, на которую нам намекает вселенная, могла бы создать фундаментальную асимметрию лептонов: лептогенез. Сфалероны, сохраняющие B — L, затем могли бы использовать лептонную асимметрию для создания барионной асимметрии.
  • Или бариогенез в масштабах теории великого объединения, если новая физика (и новые частицы) существуют в масштабах великого объединения, когда электрослабая сила объединяется с сильной.

У этих сценариев есть общие элементы, поэтому давайте рассмотрим последний из них, просто ради примера, чтобы понять, что могло произойти.

Кормовые флаги

Флаг Военно-Морского Флота

Флаг Год Наименование Описание
21.07.1992 — 29.12.2000 Военно-морской флаг Андреевский крест голубого цвета на белом фоне.
29.12.2000 Андреевский крест синего цвета на белом фоне.
21.07.1992 — 29.12.2000 Гвардейский военно-морской флаг Военно-морской флаг с расположенной на нём гвардейской лентой.
29.12.2000
21.07.1992 — 29.12.2000 Орденский военно-морской флаг Военно-морской флаг, на котором в крыже помещается изображение ордена.
29.12.2000
21.07.1992 — 29.12.2000 Гвардейский орденский военно-морской флаг Гвардейский военно-морской флаг, на котором в крыже помещается изображение ордена.
29.12.2000

Флаги вспомогательных судов ВМФ

Флаг Год Наименование Описание
21.07.1992 — 29.12.2000 Флаг судов (катеров) Вспомогательного флота Военно-Морского Флота. Синее полотнище, в крыже изображение военно-морского флага.
29.12.2000
21.07.1992 — 29.12.2000 Флаг гидрографических судов (катеров) Военно-Морского Флота. Флаг Вспомогательного флота с изображением маячного знака.
29.12.2000
21.07.1992 — 29.12.2000 Флаг поисково-спасательных судов (катеров) Военно-Морского Флота. Флаг Вспомогательного флота с изображением водолазного шлема.
29.12.2000

Флаги судов внутренних войск

Флаг Год Наименование Описание
21.07.1992 — 29.12.2000 Военно-морской флаг кораблей (катеров) и судов внутренних войск. Полотнище крапового цвета, в крыже изображение Военно-морского флага России.
29.12.2000

Флаги судов пограничных войск

Флаг Год Наименование Описание
21.05.1993 — 01.09.2008 Флаг кораблей, катеров и судов Пограничных войск Российской Федерации Полотнище светло-зелёного цвета с тёмно-голубым диагональным крестом, окантованным белой полосой.
01.09.2008 Флаг кораблей, катеров и судов пограничных органов Полотнище светло-зелёного цвета с синим диагональным крестом, окантованным белой полосой.
21.05.1993 — 01.09.2008 Орденский флаг кораблей, катеров и судов Пограничных войск Российской Федерации Флаг кораблей, катеров и судов Пограничных войск Российской Федерации, имеющий в крыже изображение ордена.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector