Стационарный плазменный двигатель
Содержание:
- Описание
- Операция
- Ссылки[править | править код]
- Заболевания, с которыми скорее всего заберут в армию
- Вопросы охранника 5 разряда
- Технические характеристики
- Можно ли собрать плазменный двигатель своими руками
- Холловский двигатель
- История
- Краткие технические характеристики
- Стационарный двигатель
- Как работает плазменный ракетный двигатель
- Электрические ракетные двигатели
- Потери
- Что такое магнитный двигатель?
- Изначально Эриду назвали Зена
- Принцип работы
- История
- Можно ли собрать плазменный двигатель своими руками
- Пистолет Heckler and Koch USP
- MPD-Thruster
- Перевозка тела погибшего (умершего) военнослужащего
- Заключение
Описание
Репульсор истребителя T-65
В основе репульсорного двигателя лежало использование субатомных «узлов» пространства-времени, получавшихся на автоматических заводах в окрестностях чёрных дыр. С их помощью двигатель создавал поле, противодействующее гравитации (как естественной — порождаемый небесным телом, так и искусственной), что позволяло оснащённым им машинам парить над землёй; в невесомости, в отсутствии какой-либо массы, от которой надо было отталкиваться, они были бесполезны. Таким образом, репульсорный двигатель был способен работать только внутри гравитационного колодца, «отталкиваясь» от него. Для типичной обитаемой планеты, такой как Альдераан, «антигравитационная область» имела размеры порядка шести планетарных диаметров (75 тыс. километров).
Репульсоры расходовали минимальное количество энергии, не производили выбросов и практически не имели радиационной сигнатуры (благодаря чему их можно было обнаружить только гравитационным способом), и были достаточно надёжными для использования в течение длительного времени. Они были редко подвержены поломкам, и даже когда мощность репульсорного двигателя падала, объекты все равно продолжали парить над поверхностью.
Репульсорная система яхты «Кетанна»
Большинство репульсоров работало от термоядерных генераторов. Репульсоры являлись самым распространённым типом антигравитационного двигателя и устанавливались на самые разные технические средства и транспортные средства. Отдельные репульсоры могли быть смонтированы в массивы, кластеры или изготовлены в виде лопастей, на которые размещались катушки гравитационных «узлов». С помощью репульсоров держатся над землёй гравициклы, свупы, лендспидеры, аэроспидеры, а также чудо инженерной мысли — Облачный город (и его аналог Талораан-Сити); репульсорный транспорт может парить на высоте от нескольких сантиметров от поверхности планеты до низких орбит. Звездолёты также оснащались репульсорами для передвижения в атмосфере планеты. Многие модели дроидов для передвижения использовали репульсоры вместо колес или ног, что повышало их проходимость и скорость.
Репульсорный лендспидер-такси
Репульсорная технология была настолько широко распространена в галактике, что большинство граждан принимают её как данность. Самые мощные репульсоры могли поднимать машины на низкую орбиту или двигать их со скоростью более 1000 км/ч.
На большинстве планетарных транспортных средств или космических кораблях репульсорные двигатели обычно устанавливались на донной части. Массивные звездолеты, наподобие звёздных разрушителей типа «Венатор» или «Победа», осуществляли посадку только с помощью мощного репульсора в «донной» части. Но даже во время нахождения на поверхности планеты этих гигантских звездолётов их посадочные опоры не могли удержать огромный вес корабля без помощи репульсоров.
Гигантский репульсор станции «Балансир»
Пять планет Кореллианской системы имели на своей поверхности огромные репульсоры. Они были столь мощны, что могли уничтожить крупные боевые корабли в близлежащем космосе, и даже остановить разрушительную огневую мощь станции «Балансир», которая создавала гравитационные воздействия, достаточное для уничтожения звезды.
Репульсорная яхта «Кетанна» и скиф
Операция
Основной принцип работы холловского двигателя заключается в том, что он использует электростатический потенциал для ускорения ионов до высоких скоростей. В двигателе Холла притягивающий отрицательный заряд создается электронной плазмой на открытом конце двигателя, а не сеткой. Радиальное магнитное поле примерно 100–300 Гс (0,01–0,03 Тл ) используется для ограничения электронов, где комбинация радиального магнитного поля и аксиального электрического поля заставляет электроны дрейфовать по азимуту, образуя ток Холла, от которого устройство получает свое имя.
Схема холловского двигателя малой тяги показана на соседнем изображении. Электрический потенциал от 150 до 800 вольт подается между анодом и катодом .
Центральный стержень образует один полюс электромагнита и окружен кольцевым пространством, а вокруг него находится другой полюс электромагнита с радиальным магнитным полем между ними.
Пропеллент, такой как газообразный ксенон , подается через анод, в котором есть множество небольших отверстий, которые действуют как газораспределитель. Ксеноновое топливо используется из-за его высокого атомного веса и низкого потенциала ионизации . По мере того, как нейтральные атомы ксенона диффундируют в канал двигателя малой тяги, они ионизируются за счет столкновений с циркулирующими электронами высокой энергии (обычно 10–40 эВ, или около 10% напряжения разряда). Большинство атомов ксенона ионизируются до чистого заряда +1, но заметная часть (
20%) имеет чистый заряд +2.
Затем ионы ксенона ускоряются электрическим полем между анодом и катодом. При разрядном напряжении 300 В ионы достигают скорости около 15 км / с (9,3 м / с) за удельный импульс 1500 секунд (15 кН · с / кг). Однако при выходе ионы увлекают за собой равное количество электронов, создавая плазменный шлейф без общего заряда.
Радиальное магнитное поле должно быть достаточно сильным, чтобы существенно отклонять электроны с малой массой, но не ионы с большой массой, которые имеют гораздо больший гирорадиус и которым практически не препятствуют. Таким образом, большинство электронов застревают на орбите в области сильного радиального магнитного поля около выходной плоскости двигателя малой тяги, захваченные в E × B (осевое электрическое поле и радиальное магнитное поле). Это орбитальное вращение электронов представляет собой циркулирующий холловский ток , и именно поэтому холловский двигатель получил свое название. Столкновения с другими частицами и стенками, а также нестабильность плазмы позволяют некоторым электронам освободиться от магнитного поля, и они дрейфуют к аноду.
Около 20–30% разрядного тока составляет электронный ток, который не создает тяги, что ограничивает энергетический КПД двигателя малой тяги; остальные 70–80% тока приходится на ионы. Поскольку большинство электронов захвачено током Холла, они имеют длительное время пребывания внутри двигателя малой тяги и способны ионизировать почти все ксеноновое топливо, что позволяет использовать 90–99% массы. Эффективность массового использования двигателя малой тяги, таким образом, составляет около 90%, в то время как эффективность тока разряда составляет около 70%, для комбинированного КПД двигателя малой тяги около 63% (= 90% × 70%). Современные подруливающие устройства Холла достигли КПД 75% благодаря усовершенствованной конструкции.
По сравнению с химическими ракетами тяга очень мала, порядка 83 мН для типичного двигателя малой тяги, работающего при 300 В, 1,5 кВт. Для сравнения, вес монеты, такой как четверть доллара США или монета 20 центов евро, составляет примерно 60 мН. Как и во всех формах силовых установок космических аппаратов с электрическим приводом , тяга ограничивается доступной мощностью, эффективностью и удельным импульсом .
Однако двигатели Холла работают при высоких удельных импульсах , характерных для электрических движителей. Одно из особых преимуществ двигателей Холла по сравнению с ионным двигателем с сеткой состоит в том, что генерация и ускорение ионов происходит в квазинейтральной плазме, поэтому нет ограничения по току насыщения заряда (пространственного заряда) Чайлда-Ленгмюра на плотность тяги. Это позволяет использовать двигатели гораздо меньшего размера по сравнению с ионными двигателями с сеткой.
Еще одно преимущество состоит в том, что эти двигатели могут использовать более широкий спектр топлива, подаваемого на анод, даже кислород, хотя на катоде необходимо что-то легко ионизируемое.
Ссылки[править | править код]
Заболевания, с которыми скорее всего заберут в армию
Аллергический дерматит
В отличие от атопического дерматита, наличие аллергического не помешает военкомату вас призвать.
Аллергический бронхит
С аллергическим бронхитом вы подлежите призыву в армию.
Можно разве что попытаться представить его под видом аллергической бронхиальной астмы, если лечащий врач сочтет что степень тяжести симптомов соответствует.
Аллергические риниты
К ним в частности относятся вазомоторный аллергический ринит и круглогодичный аллергический ринит.
Мнение эксперта
Давыдов Дмитрий Станиславович
Заместитель начальника военного комиссариата
Несмотря что заболевания с категории ринитов являются факторами риска развития астмы, их наличие не освобождает от призыва на военную службу.
Впрочем, можно постараться убедить медицинскую комиссию в серьезности заболевания, если наблюдается стойкое нарушение функции носового дыхания.
Аллергический риносинусит
Не является причиной непригодности к службе.
Респираторный аллергоз
Данный диагноз так же не поможет «откосить» от армии по аллергии.
Вопросы охранника 5 разряда
Технические характеристики
Спецификой этого двигателя, как и других электроракетных двигателей, является значительно большая скорость истечения рабочего тела по сравнению с использовавшимися ранее химическими двигателями, позволяющая значительно уменьшить запасы рабочего тела, необходимые для решения названных выше задач. Его применение в составе геостационарных КА позволяет увеличить долю массы целевой аппаратуры и срок их активного существования до 12-15 лет. За счёт этого значительно повышается эффективность КА.
ОКБ «Факел» производит различные двигатели, отличающиеся тягой, массогабаритными характеристиками, потребляемой мощностью для различных КА.
Модель | Назначение | Тяга, мН | Мощность, кВт | Удельный импульс, с | Тяговый КПД, % | Ресурс, ч | Масса, кг | Примеры КА |
---|---|---|---|---|---|---|---|---|
СПД-25 | коррекция орбиты, манёвры, ориентация, стабилизация малоразмерных КА (массой ~100 кг) | 7 | 0,1 | 800 | 20 | 1500 | 0,3 | |
СПД-50 | ЭРДУ малых космических аппаратов | 14 | 0,22 | 860 | 26 | ≥2500 | 1,23 | Метеор 1-27, Космос-1066, Канопус-В |
СПД-60 | ЭРДУ малых космических аппаратов | 30 | 0,5 | 1300 | 37 | 2500 | 1,2 | некоторые КА из серии Метеор |
СПД-70 | ЭРДУ средних космических аппаратов | 40 | 0,66 | 1470 | 43 | 3100 | 2 | Экспресс-МД1,КазСат-2, … |
СПД-100В | ЭРДУ различных космических аппаратов | 83 | 1,35 | 1600 | 45 | >9000 | 3,5 | Экспресс-АМ44,АМОС-5, … |
PPS-1350-G | воспроизведённая в Европе компанией Snecma Moteurs технология SPT-100 в рамках соглашения между ОКБ «ФАКЕЛ» и Snecma Moteurs | 84 | 1,5 | 1668 | 46 | 7000 | 3,5 | SMART-1 |
SPT-140 | межорбитальная транспортировка, коррекции орбиты тяжёлых геостационарных КА | 193/290 | 3,0/4,5 | 1680/1770 | 50/55 | >9000 | 8,4 | Eutelsat 172B |
СПД-230 | до 785 | до 15 | до 2700 | до 60 | — | 25 |
Можно ли собрать плазменный двигатель своими руками
В качестве демонстрационного образца «ионного двигателя» используется достаточно простое устройство, известное среди радиолюбителей под названием «качер Бровина». С его помощью можно наблюдать эффектные коронные разряды, молнии, а также плазменные дуги. Устройство было изобретено в 1987 году советским радиоинженером Владимиром Бровиным. Оно настолько простое, что изготовить его своими руками сможет даже начинающий радиолюбитель.
Качер Бровина питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 Мгц с эффективностью 90%. Для сборки устройства также потребуется пластиковая труба 80х200 мм — на неё будут намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Эта схема полностью стабильна, она может работать сотни часов без перерыва.
Демонстрационный образец работы «ионного двигателя» достигается последовательным повышением напряжения, подаваемого на качер Бровина. Если схема была собрана на транзисторе КТ902А, то стример на конце иглы должен появиться на 4 вольтах. С повышением напряжения он будет возрастать. При достижении 16 вольт он превратится в визуальный аналог фантастического «репульсорного» луча, а при 18 В увеличится примерно до 17 мм. Далее под напряжением 20 В электрические разряды будут напоминать в работе настоящий ионный двигатель.
Реальная двигательная установка, обеспечивающая заметную реактивную тягу при истечении плазмы, более известна как СМОЛА (Спиральная Магнитная Открытая ЛовушкА). Фактически она представляет собой собранный своими руками плазменный двигатель с небольшими по мощности характеристиками. Установка СМОЛА в целом представляет собой трубу с винтовым магнитным полем, которая заканчивается парой расширителей. Оптимальной считается комбинация из общей длины устройства (6 метров), величины магнитного поля (до 0,3 Тесла) и плотности плазмы (10^19 частиц в кубометре).
Оптимизированная система СМОЛА (отмечены два винтовых проводника с током и пачка плоских катушек)
Реально действующая установка СМОЛА требует наличия достаточно серьёзной техники, в составе которой требуется:
- Вакуумная система (в том числе турбомолекулярные роторные насосы), обеспечивающая давление ниже 10^-4 Па (одна миллиардная атмосферы);
- Магнитная система, представляющая собой шину сечением 15 мм из твёрдой меди;
- Суперконденсаторные сборки, выдающие от 200 кДж накопленной энергии.
Получившаяся плазма растекается вдоль силовых линий магнитного поля, проходит через трубу с винтовым полем, после чего, расширяясь, попадает на плазмоприёмник из изолированных друг от друга молибденовых пластин. Между пластинами можно подавать любые желаемые напряжения, чтобы раскрутить плазму радиальным электрическим полем.
Холловский двигатель
Это вариант плазменного агрегата, для которого нет ограничений, что налагаются объёмным зарядом. Их отсутствие обеспечивает большую плотность тяги. А это значит, что холловский плазменный двигатель может увеличить скорость космических аппаратов в разы, если сравнивать, например, с ионным агрегатом того же размера.
В основе работы аппарата лежит эффект, который открыл американский физик Эдвин Холл в 1879 году. Он продемонстрировал, как в проводнике с взаимно перпендикулярным магнитным и электрическим полем образуется электроток. Причём в направлении, которое им обоим перпендикулярно.
Проще говоря, в холловском агрегате плазма образуется зарядом между анодом (+) и катодом (-). Действие несложное — разряд отделяет электроны от нейтральных атомов.
Стоит отметить, что на околоземных орбитах сосредоточено порядка 200 спутников с холловскими плазменными двигателями. Для космических аппаратов его мощности хватает вполне. К слову, именно такой агрегат использовался Европейским космическим агентством в целях экономичного разгона SMART-1 – его первой автоматической станции для исследования Луны.
История
Идея создания СПД была предложена А. И. Морозовым в начале 60-х годов XX века. В 1968 году академиком А. П. Александровым и главным конструктором А. Г. Иосифьяном было принято историческое решение о создании корректирующей двигательной установки (КДУ) с СПД. Разработка первой КДУ и её интеграция в КА «Метеор» была выполнена в тесном содружестве групп учёных и специалистов Института атомной энергии им. И. В. Курчатова (Г. Тилинин), ОКБ «Факел» (К. Козубский), ОКБ «Заря» (Л. Новосёлов) и ВНИИЭМ (Ю. Рылов). В декабре 1971 г. двигательная установка с СПД — КДУ «Эол» успешно стартовала в космос в составе КА «Метеор». В феврале-июне 1972 г. были проведены первые включения и испытания, продемонстрировавшие работоспособность СПД в космосе и совместимость с КА на околоземных орбитах. Высота орбиты была поднята на 17 км.
С 1995 года СПД используется в системах коррекции серии связных геостационарных КА типа «Галс», «Экспресс», «Экспресс-А», Экспресс-АМ, Sesat разработки НПО прикладной механики, а с 2003 года — в составе зарубежных геостационарных спутников типа Inmarsat, Intelsat-X, IPSTAR-II, Telstar-8 для решения задач приведения в «рабочую точку», стабилизации положения в этой точке, изменения «рабочей точки» в случае необходимости и увода с неё по окончании эксплуатации.
К январю 2012 года на запущенных в космос аппаратах было установлено в общей сложности 352 двигателя СПД.
Краткие технические характеристики
ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.
В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 1020 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g). Исключением из этого правила могут быть ЭДД на малых КА.
Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.
ЭРД характеризуются КПД — от 30 до 60 %.
Стационарный двигатель
Об этом изобретении тоже стоит сказать пару слов. Стационарный плазменный двигатель имеет особенность в виде малой вырабатываемой мощности и компактности.
Он может использоваться в космической технике как исполнительный орган электрореактивной установки. Или же в рамках научных исследований. С помощью данного изобретения вполне реально моделировать направленные плазменные потоки.
По сути, такой плазменный двигатель – это магнетрон, широко применяемый в промышленности. Он, в свою очередь, представляет собой технологическое устройство, с помощью которого тонкие плёнки материала наносятся на подложку катодным распылением мишени в плазме. Но не нужно путать данное устройство с вакуумными магнетронами. Они выполняют совершенно другую функцию – генерацию СВЧ-колебаний.
С 1995 года стационарные плазменные двигатели задействованы в системах коррекции серии связных геостационарных KA. Потом, начиная с 2003 г., данные устройства стали применять в зарубежных геостационарных спутниках. К началу 2012 года уже 352 двигателя было установлено на аппаратах, которые вышли в открытый космос.
Как работает плазменный ракетный двигатель
Электрические ракетные двигатели
В электрических ракетных двигателях (ЭРД) в качестве источника энергии для создания тяги используется электрическая энергия. Удельный импульс электрических ракетных двигателей может достигать 10—210 км/с.
В зависимости от способа преобразования электрической энергии в кинетическую энергию реактивной струи, различают электротермические ракетные двигатели, электростатические (ионные) ракетные двигатели и электромагнитные ракетные двигатели.
Высокие значения удельного импульса ЭРД позволяет ему расходовать (в сравнении с химическими двигателями) малое количество рабочего тела на единицу тяги, но при этом возникает проблема большого количества электроэнергии, необходимой для создания тяги. Мощность, необходимая для создания единицы тяги ракетного двигателя (без учёта потерь), определяется формулой:
Здесь P{\displaystyle P} — удельная мощность (ватт/ньютон тяги); I{\displaystyle I} — удельный импульс (м/c).
Таким образом, чем выше удельный импульс, тем меньше требуется вещества, и больше — энергии, для создания единицы тяги. Поскольку мощность источников электроэнергии на космических аппаратах весьма ограничена, это ограничивает и тягу, которую могут развить ЭРД. Самым приемлемым для ЭРД источником электроэнергии в космосе в настоящее время являются солнечные батареи, не потребляющие топлива, и обладающие достаточно высокой удельной мощностью (по сравнению с другими источниками электроэнергии).
Низкая тяга (не превышающая единиц ньютонов для самых мощных из современных электрических ракетных двигателей) и неработоспособность в атмосфере, на высотах менее 100 км сужают область применения электрических ракетных двигателей.
Потери
С этим самолетом связано 8 катастроф, самыми масштабными из которых были:
- 16.09.1991. Самолет взлетел с перегрузом, механизация разрушилась в воздухе. Машина упала в лесу. Погибли 6 членов экипажа и 7 пассажиров.
- 05.06.1994, перелет Ан-72В Новосибирск – Киев. Тогда в полете было обесточено бортовое оборудование. Причина – тепловой разгон аккумуляторов. Самолет произвел вынужденную посадку в Кургане, при этом он выкатился за пределы взлетно-посадочной полосы с разрушенным правым задним пневматиком. Экипаж и пассажиры не пострадали.
- 10.02.1995. Ан-72В с тремя членами экипажа сопровождал прототип Ан-70 с 7 членами экипажа на борту. Самолеты столкнулись в небе над Бородянским районом Киевской области. Ан-72 уцелел и сумел совершить посадку в аэропорту Антонова. Ан-70 упал в лес, все члены экипажа погибли.
- 07.06.2000, перелет Моздок-Москва. В воздухе произошла разгерметизация самолета. С высоты 8,5 тысяч метров самолет начал неуправляемое снижение, так как в результате гипоксии экипаж и пассажиры потеряли ориентацию. Тем не менее, экипаж сумел посадить самолет в Ростове-на-Дону.
- 25.12.2012. Катастрофа под Шимкентом. Самолет пограничной службы республики Казахстан в сложных метеоусловиях упал на землю с высоты 800 метров. Причина – ошибка экипажа. Погибли 7 членов экипажа и 20 пассажиров.
Что такое магнитный двигатель?
Что такое вечный двигатель? Фактически, это механизм, КПД которого составляет 100%. К сожалению, на практике это выглядит несколько по-иному, ведь в работу вмешивается слишком много физических явлений, таких как сила трения и т.д. Со временем составные части любого механизма изнашиваются и выходят из строя, соответственно, требуют замены.
Магнитный двигатель не исключение, он обладает интересной, обоснованной с технической точки зрения конструкцией . Движение здесь обеспечивают постоянные (не электрические) магниты и подвижные металлические поверхности. Получается, что магнитному двигателю достаточно только задать вращение, и в случае необходимости обеспечить остановку.
Изначально Эриду назвали Зена
Принцип работы
На удивление экспериментальная установка устроена очень просто. При помощи компрессора воздух под давлением идет в кварцевую трубку. К ней присоединен волновод, у которого на одном конце установлен магнетрон мощностью в 1 кВт. Именно это то устройство, которое отвечает за разогрев еды в микроволновке. Оно генерирует излучение в 2,45 ГГц, благодаря которому происходит ионизация и нагрев подаваемого воздуха. В итоге мы получаем плазму, в будущем отводящуюся в «реактивное сопло». Данный аппарат выглядит как кварцевая трубка в диаметре 24 см.
Таким образом, один конец у нас с, так называемой, микроволновкой. Отметим, что аппарат охлаждается простой водой. Если этого не делать, то есть риск возникновения выскоплазменного электромангала.
В результате эксперимента тяга, которую создали китайские ученые, заставляет подпрыгивать стальной шар, который весит 1 кг. Его крепят на конце импровизированного сопла. Проанализировав полученные данные, можно сказать, что подъемная сила в 28 Н/кВт, а также давление в 24 кН/кв.м. дает вполне реальную жизнь идее, когда воздушно плазменный реактивный двигатель становится интересным аналогом обычного реактивного двигателя, который работает на ископаемом топливе.
Ошеломляющий результат разработки – сразу три весомых для планеты пункта:
- Больше не надо жечь нефтепродукты.
- Заметно сократиться загрязнение атмосферы углеродом.
- Замедлится процесс глобального потепления.
Ученые предполагают, что в будущем такими двигателями можно оснастить самые разные устройства, в том числе и самолеты. Но внедрить изобретение можно только тогда, когда будут разработаны компактные и мощные источники энергии. Ими вполне могут стать портативные термоядерные реакторы.
История
Идея создания СПД была предложена А. И. Морозовым в начале 60-х годов XX века. В 1968 году академиком А. П. Александровым и главным конструктором А. Г. Иосифьяном было принято историческое решение о создании корректирующей двигательной установки (КДУ) с СПД. Разработка первой КДУ и её интеграция в КА «Метеор» была выполнена в тесном содружестве групп учёных и специалистов Института атомной энергии им. И. В. Курчатова (Г. Тилинин), ОКБ «Факел» (К. Козубский), ОКБ «Заря» (Л. Новосёлов) и ВНИИЭМ (Ю. Рылов). В декабре 1971 г. двигательная установка с СПД — КДУ «Эол» успешно стартовала в космос в составе КА «Метеор». В феврале-июне 1972 г. были проведены первые включения и испытания, продемонстрировавшие работоспособность СПД в космосе и совместимость с КА на околоземных орбитах. Высота орбиты была поднята на 17 км.
С 1995 года СПД используется в системах коррекции серии связных геостационарных КА типа «Галс», «Экспресс», «Экспресс-А», Экспресс-АМ, Sesat разработки НПО прикладной механики, а с 2003 года — в составе зарубежных геостационарных спутников типа Inmarsat, Intelsat-X, IPSTAR-II, Telstar-8 для решения задач приведения в «рабочую точку», стабилизации положения в этой точке, изменения «рабочей точки» в случае необходимости и увода с неё по окончании эксплуатации.
К январю 2012 года на запущенных в космос аппаратах было установлено в общей сложности 352 двигателя СПД.
Можно ли собрать плазменный двигатель своими руками
В качестве демонстрационного образца «ионного двигателя» используется достаточно простое устройство, известное среди радиолюбителей под названием «качер Бровина». С его помощью можно наблюдать эффектные коронные разряды, молнии, а также плазменные дуги. Устройство было изобретено в 1987 году советским радиоинженером Владимиром Бровиным. Оно настолько простое, что изготовить его своими руками сможет даже начинающий радиолюбитель.
Качер Бровина питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 Мгц с эффективностью 90%. Для сборки устройства также потребуется пластиковая труба 80х200 мм — на неё будут намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Эта схема полностью стабильна, она может работать сотни часов без перерыва.
Демонстрационный образец работы «ионного двигателя» достигается последовательным повышением напряжения, подаваемого на качер Бровина. Если схема была собрана на транзисторе КТ902А, то стример на конце иглы должен появиться на 4 вольтах. С повышением напряжения он будет возрастать. При достижении 16 вольт он превратится в визуальный аналог фантастического «репульсорного» луча, а при 18 В увеличится примерно до 17 мм. Далее под напряжением 20 В электрические разряды будут напоминать в работе настоящий ионный двигатель.
Реальная двигательная установка, обеспечивающая заметную реактивную тягу при истечении плазмы, более известна как СМОЛА (Спиральная Магнитная Открытая ЛовушкА). Фактически она представляет собой собранный своими руками плазменный двигатель с небольшими по мощности характеристиками. Установка СМОЛА в целом представляет собой трубу с винтовым магнитным полем, которая заканчивается парой расширителей. Оптимальной считается комбинация из общей длины устройства (6 метров), величины магнитного поля (до 0,3 Тесла) и плотности плазмы (10^19 частиц в кубометре).
Оптимизированная система СМОЛА (отмечены два винтовых проводника с током и пачка плоских катушек)
Реально действующая установка СМОЛА требует наличия достаточно серьёзной техники, в составе которой требуется:
- Вакуумная система (в том числе турбомолекулярные роторные насосы), обеспечивающая давление ниже 10^-4 Па (одна миллиардная атмосферы);
- Магнитная система, представляющая собой шину сечением 15 мм из твёрдой меди;
- Суперконденсаторные сборки, выдающие от 200 кДж накопленной энергии.
Получившаяся плазма растекается вдоль силовых линий магнитного поля, проходит через трубу с винтовым полем, после чего, расширяясь, попадает на плазмоприёмник из изолированных друг от друга молибденовых пластин. Между пластинами можно подавать любые желаемые напряжения, чтобы раскрутить плазму радиальным электрическим полем.
Пистолет Heckler and Koch USP
MPD-Thruster
Это ещё один концепт плазменного агрегата. С ним связано немало надежд на космические технологии.
В чём идея? Создаётся заряд плазмы между катодом и анодом, который способствует индуцированию кольцевого магнитного поля. В действие вступает сила Лоренца, при помощи которой поле воздействует на движущиеся заряды тока, вследствие чего определённая их часть отклоняется в продольном направлении. В результате возникает плазменный сгусток, истекающий «вправо». Именно он формирует тяговый толчок.
Данный двигатель осуществляет работу в импульсном режиме, поскольку кратковременные паузы между разрядами необходимы – так копится заряд на электродах.
Чем перспективен MPD-Thruster? Он работает без разделения разноименных зарядов. Так как они в зарядном токе двигаются встречно. Это значит, что и силы Лоренца имеют идентичное направление.
В теории у данного концепта очень выдающиеся показатели. Он может развивать впечатляющую тягу. Но и нюансы тоже есть. Магнитному полю не подвластен «разгон» электрических зарядов. Всё из-за того, что сила Лоренца оказывает воздействие, перпендикулярное их скорости. То есть не изменяет кинетические показатели. MPD-Thruster только немного изменяет направления, по которым следуют заряды – для того чтобы плазма вылетала наружу продольно.
В идеале ток между катодом и анодом должен быть в разы плотнее. Это обязательно для создания тяги. И требует больших затрат электрической энергии. Которая, впрочем, не уступает мощности плазменной струи.
Если удельный импульс составит 1000 километров в секунду, а тяга – 100 кг, то на потребление будут уходить сотни мегаватт. Которые генерировать в космосе практически невозможно. Даже если допустить такую вероятность, корабль с MPD-Thruster, имеющий нетто-массу в 100 тонн, разгонится до отметки в 10 000 км/сек. лишь за 317 лет! И это при запредельно астрономическом стартовом весе, составляющем 2,2 миллиона тонн.
При таких показателях даже невозможно представить расход газа в агрегате, пропускающем электронные заряды. И никаких подсчётов не нужно делать, дабы понять – никакие электроды не способны выдержать столь весомых химических и тепловых нагрузок.
Перевозка тела погибшего (умершего) военнослужащего
Заключение
В завершение хотелось бы сказать, что ни один плазменный двигатель для космических кораблей из существующих в наше время не способен доставить ракету даже к ближайшим звёздам. Это касается как экспериментально проверенных аппаратов, так и теоретически просчитанных.
Многие учёные приходят к пессимистичному заключению – разрыв между нашей планетой и звёздами фатально непреодолим. Даже до системы Альфа Центавра, некоторые компоненты которой видны невооружённым глазом с Земли, а ведь расстояние составляет 39,9 триллиона километров. Даже на космическом аппарате, способном передвигаться со скоростью света, преодоление данного расстояния составило бы около 4,2-4,3 лет.
Так что плазменные агрегаты звездолётов – это, скорей, из сферы научной фантастики. Но это ничуть не преуменьшает их значимость! Их используют в качестве маневровых, вспомогательных и корректирующих орбиты двигателей. Поэтому изобретение вполне оправдано.
А вот ядерный импульсный агрегат, который утилизирует энергию взрывов, имеет вероятный потенциал развития. Во всяком случае, как минимум в теории отправка автоматического зонда в ближайшую звёздную систему является возможной.
Источник