Красный гигант

Обнаружение

Наиболее яркие звёзды в шаровых скоплениях, таких как NGC 288, являются красными гигантами

Красные гиганты были открыты в начале XX-го века, когда при анализе диаграммы Герцшпрунга—Рессела были обнаружены два типа популяций холодных звёзд различного размера: карлики, находящиеся на главной последовательности, и звёзды-гиганты.

Название ветвь красных гигантов начало использоваться с 1940-1950-х годов, изначально в виде названия для области красных гигантов на диаграмме Герцшпрунга—Рессела. Хотя основы термоядерного синтеза в звёздах на главной последовательности были известны уже в 1940-х годах, но подробности внутреннего строения различных типов звёзд-гигантов ещё не были изучены.

В 1968 году название асимптотическая ветвь гигантов использовалось для ветви звёзд, светимость которых превышает светимость большинства красных гигантов, менее устойчивых и зачастую переменных с большим периодом переменности. Наблюдения раздвоенной ветви гигантов проводились и до этого, но связь разных частей была не ясна. К 1970 году было известно, что область красных гигантов состоит из области субгигантов, ветви красных гигантов, горизонтальной ветви и асимптотической ветви гигантов, а также был исследован эволюционный статус звёзд в данных областях. Ветвь красных гигантов была описана в 1967 году как первая ветвь гигантов, второй ветвью является асимптотическая ветвь гигантов, данные термины употребляются и в настоящее время.

В современной звёздной физике создаются модели протекающих в недрах звёзд процессов, соответствующих различным стадиям жизни звезды средней массы после главной последовательности, точность и сложность моделей увеличивается со временем. Результаты исследования ветви красных гигантов используются в том числе как основа для исследований в других областях.

Красные гиганты — переменные звёзды

Фотография Миры в ультрафиолете. «Хвост» звёздной атмосферы обусловлен влиянием звезды-компаньона

  • Мириды (радиально пульсирующие долгопериодические переменные типа Ми́ры — Омикрона Кита) — гиганты спектрального класса М с периодом от 80 до более 1000 дней и вариациями блеска от 2,5m до 11m, в спектрах присутствуют эмиссионные линии.
  • SR — полуправильные пульсирующие переменные гиганты спектрального класса М с периодом от 20 дней до нескольких лет и вариациями блеска ~ 3m (пример: Z Большой Медведицы (нем.)русск.).
  • SRc — полуправильные пульсирующие переменные сверхгиганты спектрального класса М (примеры: μ Цефея, Бетельгейзе, α Геркулеса).
  • Lb — неправильные медленные пульсирующие переменные гиганты спектрального класса K, M, C, S (примеры: CO Cyg).
  • Lc — неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M с вариациями блеска ~ 1m (примеры: TZ Cas).

Разновидности сорта Шпанка

В конце XX — начале XXI века на основе старинного сорта Шпанка селекционеры создали новые сорта, которые также достойны внимания садоводов.

Шпанка Брянская

Сорт включён в Госреестр в 2009 году, рекомендуется к использованию в Центральном регионе. Ствол короткий, средней высокорослости, то есть ниже старой Шпанки. Побеги растут не параллельно земле, а вверх, из-за чего дерево имеет другую форму. Цвет коры серо-оливковый. Плоды мельче, до 4 г весом, круглоплоской формы, светло-красные. Сахаров набирает до 9%, что далеко не рекорд, поэтому вкус спелых плодов не сладко-кислый, а, наоборот, кисло-сладкий. Считается самоплодным, способным плодоносить на одиночном дереве. Раннего срока созревания.

Средняя урожайность Шпанки Брянской, по данным Госреестра — 73 ц с 1 га, то есть 73 кг со 100 м2, или около 8 кг с одного ствола. По другим данным, Шпанка Брянская даёт около 35–40 кг с одного ствола, что уже ближе к реальности.

Вишня Шпанка Брянская рекомендуется к выращиванию в Центральном регионе

Шпанка Шимская

Сорт получил название по месту происхождения — Шимский район Ленинградской области. Поэтому он прекрасно адаптирован к условиям Северо-Запада.

Сорт раннего созревания, ягоды поспевают в конце июня — начале июля. Плодоносит до августа. Чем южнее регион, тем быстрее начинается плодоношение. С одного взрослого ствола можно собрать до 45–55 кг плодов. Начинает плодоносить с 3–4 года, срок жизни до 25 лет. Плоды среднего размера, до 3,5 г, светло-красные даже в зрелом состоянии, сладкие, с кислинкой. Мякоть светло-розовая, сок не красящий.

Дерево среднерослое, до 3 м в высоту. Крона кустовидная, редкая, не требующая прореживающей обрезки. Кора очень тёмная, почти чёрная даже на молодых двухлетних побегах. Хорошо переносит зиму, но иногда может пострадать от грибкового заболевания, монилиального ожога, что потребует обработки фунгицидами.

Сорт самобесплодный, поэтому требует посадки в группе с опылителями, вишнями других сортов, например, Владимирской или Коростынской.

Шпанка Донецкая

Как и Шимская, получила название по месту происхождения — Донецкая опытная станция садоводства. Это гибрид черешни и вишни. Крона в первые годы в форме пирамиды, затем становится округлой. Сорт даёт рекордно крупные ягоды — до 6–7 г. Плоды светло-красные, мякоть жёлтая, вкус кисло-сладкий. Сорт зимостойкий и засухоустойчивый. При сильных морозах в зиму может пострадать, но способен быстро восстанавливаться. Склонность к грибковым заболеваниям средняя.

Дерево начинает плодоносить с 3–4 года, пика достигает к 9–12 годам.

Сорт низкой самоплодности, отдельное дерево даст небольшой урожай. Поэтому требует посадки в группе для взаимного опыления. В тёплых регионах для опыления рекомендуется сажать не вишню или гибрид, а черешни.

У Шпанки Донецкой крупные светло-красные ягоды

Шпанка карликовая

Ягоды Шпанки карликовой отличаются отменным вкусом. Это гибрид вишни и черешни, поэтому имеет вкус черешни в сочетании с лучшими вкусовыми качествами вишни. Сорт считается живучим и выносливым, устойчивым к морозным зимам, грибковым заболеваниям и вредителям, поэтому успешно растёт и на Северо-Западе.

Средняя высота взрослого дерева Шпанки карликовой — не более 3 м

Шпанка курская

Этот сорт был выделен учёными-селекционерами почти век назад. А в 1938 году ему дали отдельное название Шпанка ранняя, или Курская, по месту происхождения, чтобы избежать путаницы в группе сортов, также известными как Шпанка. Многие ещё и сейчас путают её с крупной южной Шпанкой. Но это два отдельных сорта, сильно отличных друг от друга. Шпанка курская — это не гибрид с черешней, а чистая вишня, относится к типу аморель, то есть красная вишня с бесцветным соком. Сорт был широко распространён в Курской области, реже встречался в соседних областях. В более северных районах он никогда не рос, возможно, из-за низкой зимостойкости. И даже в южных областях вишня сильно вымерзала в суровые зимы.

Сорт ранний, плоды созревают с середины июня. В высоту дерево достигает 4 м. Крона широкая и раскидистая, редкая, побеги толстые, серо-коричневого цвета. Урожайность зависит от условий зимовки цветочных почек. Если почки не вымерзают, дерево даёт до 30 кг плодов. Плодоносить начинает на 4–5 году. Срок жизни до 25 лет, пик урожайности наступает в 12–18 лет.

Размножается прививкой на сеянцы кислой местной вишни. Это повышает её морозостойкость. Хотя можно размножать и корневой порослью. Для опыления нужно сажать её в группе с сортами такой же высоты — Владимирской, Кентской и сортами группы Гриот.

Агротехника выращивания

Посевы начинают в марте по лунному календарю. Семена можно обработать в стимуляторе роста, проращивать их не обязательно. Грунт используют покупной или смесь его же с дерновой землёй. Так как сорт требовательный к плодородию, то лучше не экспериментировать со своими составами, если вы новичок.

Помидоры «Красный гигант» не терпят закисленный грунт. рН должен быть в пределах 6-6.5. Все, что ниже требует известкования. Проверяется почва лакмусом.


Почву распределяют по стаканчикам или в общую тару, проливают ее заранее кипятком от паразитов. После высевают семена на глубину в 1 см, увлажняют и закрывают пленкой. После всходы нужно пикировать, если они в общем лотке, подкормить мочевиной один раз до переноса в грунт. Температура в доме должна быть 23-25 градусов. Перед переносом проводят закаливание.

Грунт на участке должен быть хорошо подготовлен, а теплица обработана от стен до потолка. Нужно перекопать участок, удалить траву, внести перегной, компост и песок примерно в равных частях. На один метр сажают не больше трёх кустиков. Поливают отстоявшейся водой. Почву можно закрыть мульчей.


Каждые 10 дней нужно вносить подкорм, чередуя органику и минеральный подкорм с калием и фосфором в большем количестве. Обязательно нужно рыхлить участок, ставить подпоры или шпалеру.

Пасынкуют кусты примерно раз в неделю, в верхней пазухе оставляют пасынок, чтобы сформировать второй стебель. Удаление проводится вечером и не в жару.

По мере созревания урожая ставятся опоры под ветки. Вот и все, что мы хотели вам рассказать про томат «Гигант красный», его характеристику и описание сорта, а также про агротехнику.

Ссылки

Бывают ли «молодые» гиганты?

Некоторые небесные объекты достигают поздних спектральных классов ещё до начала завершения своей жизни. Бывают случаи, когда процесс преобразования в красного гиганта начинается в самом начале звездообразования. У таких светил излучение осуществляется благодаря гравитации, образующейся из-за сжатия объекта. Длительность трансформации напрямую зависит от массы и габаритов звезды и продолжаются от ~ 103 лет до ~ 108 лет.

Благодаря сжатию повышается температура звёзд и уменьшается их размер. Это приводит к снижению светимости. В результате в центре светила начинаются термоядерные реакции, после чего они попадают в главную последовательность. Несмотря на то что «молодые» и «старые» гиганты очень похожи друг на друга, астрономы называют красными гигантами только те объекты, которые дошли до поздних этапов эволюции. Молодые светила, находящихся в начальной стадии своего формирования, называют протозвёздами.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза (масштаб не соблюдён)

История создания

История создания конвертоплана берёт свое начало в 1980-х годах, когда Министерство Обороны США начало искать альтернативу обычным самолётам вертикального взлёта/посадки. Несмотря на то, что такой тип самолётов получил широкое распространение в ряде стран, в том числе СССР и США, к работе данных самолётов имелся ряд претензий, так как эти машины были сложны в освоении и пилотировании, опасны и неустойчивы, а также обладали достаточно большим расходом топлива, которое при сгорании разрушало взлётно-посадочные полосы.

На замену самолётам вертикального взлёта и посадки было решено разработать боевой конвертоплан, так как некоторые авиастроительные корпорации уже имели некоторый опыт в строительстве данного типа самолётов. Использовать конвертопланы планировалось в морской пехоте, военно-морских силах , и в военно-воздушных силах США.

Основными конструкторами и разработчиками назначили фирму Bell Helicopter и подразделение Boeing, отвечающее за разработку вертолетов (Boeing Rotorcraft Systems). Проектирование Bell-Boeing V-22 «Osprey» было начато в 1986 году.

Классическая форма клинка ножа (Прямой обух, Normal Blade, Финка)

Литература

Планеты [ править ]

Красные гиганты с известными планетами: HD 208527 , HD 220074 M-типа и, по состоянию на февраль 2014 г., несколько десятков известных K-гигантов, включая Pollux , Gamma Cephei и Iota Draconis .

Перспективы обитаемости

Хотя традиционно было предложена эволюция звезды в красный гигант будет оказывать свою планетарную систему , если она присутствует, непригодные для жизни, некоторые исследования показывают , что в ходе эволюции 1  M звезд вдоль красного гиганта отрасли, он может затаить обитаемая зона в течение нескольких миллиардов лет на 2 астрономических единицах (а.е.), чтобы около 100 миллионов лет в 9 а.е., давая достаточно , возможно , время жизни развиваться на подходящем мире. После стадии красного гиганта у такой звезды будет зона обитаемости между 7 и 22 а.е. еще на один миллиард лет. Более поздние исследования уточнили этот сценарий, показав, как для 1  M Обитаемая зона длится от 100 миллионов лет для планеты с орбитой, подобной орбите Марса, до 210 миллионов лет для планеты, которая вращается на расстоянии Сатурна от Солнца, максимальное время (370 миллионов лет), соответствующее планетам, вращающимся на орбите расстояние до Юпитера . Однако для планет, вращающихся вокруг звезды 0,5  M по орбитам, эквивалентным орбитам Юпитера и Сатурна, они будут находиться в пригодной для жизни зоне в течение 5,8 и 2,1 млрд лет соответственно; для звезд более массивных, чем Солнце, времена значительно короче.

Увеличение планет

По состоянию на июнь 2014 года около звезд-гигантов было обнаружено пятьдесят планет-гигантов. Однако эти планеты-гиганты более массивны, чем планеты-гиганты, расположенные вокруг звезд солнечного типа. Это может быть связано с тем, что звезды-гиганты более массивны, чем Солнце (менее массивные звезды по-прежнему будут на главной последовательности и еще не станут гигантами), и ожидается, что более массивные звезды будут иметь более массивные планеты. Однако массы планет, обнаруженных вокруг звезд-гигантов, не коррелируют с массами звезд; следовательно, планеты могут расти в массе во время фазы красных гигантов звезд. Увеличение массы планеты может быть частично связано с аккрецией от звездного ветра, хотя гораздо больший эффект будет иметь полость Роша.переполнение, вызывающее перенос массы от звезды к планете, когда гигант расширяется на орбитальное расстояние планеты.

Красные гиганты — переменные звёзды

  • Радиально пульсирующие долгопериодические переменные типа Ми́ры — омикрона Кита (Long Period Variables M, Omicron Ceti-type) — гиганты спектрального класса М с периодом от 80 до более 1000 дней и вариациями блеска от 2.5m до 11m, в спектрах присутствуют эмиссионные линии.
  • SR — полуправильные пульсирующие переменные гиганты спектрального класса М (типа Z UMa) с периодом от 20 до нескольких лет и вариациями блеска ~ 3m,
  • SRc — полуправильные пульсирующие переменные сверхгиганты спектрального класса М (типа μ Cep).
  • Lb — неправильные медленные пульсирующие переменные гиганты спектрального класса K, M, C, S (типа CO Cyg)
  • Lc — неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M (типа TZ Cas) с вариациями блеска ~ 1m

Кинжал «басселард»

Какие виды звёзд существуют

Итак, выделим основные виды звезд:

  • Светила главной последовательности — на этом этапе они проводят до 90% всей своей жизни. Главным образом, основные термоядерные реакции связаны с горением водорода. В результате чего формируется гелиевое ядро.
  • Коричневые карлики — интересный тип субзвёздных объектов. В их ядре также протекают термоядерные реакции, но основе лежит горение лёгких элементов. Например, бора, лития, бериллия или дейтерия. Поэтому тепловыделение и излучение у подобных тел быстро заканчивается. Что, соответственно, приводит к их остыванию, а затем превращению в планетоподобные объекты.
  • Красные карлики отличаются долгой продолжительностью жизни, поскольку горение водорода в них проходит медленно. Вероятно, поэтому красных карликов больше других звёздных тел во Вселенной. Хотя из-за медленных процессов и слабого излучения, они не видны с нашей планеты без специальных приборов.
  • Красные гиганты образуются после того, как сгорит весь водородный запас, что приводит к гелиевой вспышке и расширению звезды.
  • Белые карлики имеют малую массу. Можно сказать, это остаток от красных гигантов, скинувших свою оболочку. При взрыве начинается процесс горения углерода и кислорода. Светило увеличивает атмосферные границы, быстро теряет газ и превращается в белый карлик.
  • Сверхгиганты — массивный тип светил, которые из-за происходящих внутри реакций быстро покидают стадию главной последовательности. Для них характерна низкая температура, но высокий показатель светимости.
  • Переменные звёзды — это те, у которых хотя бы раз за весь жизненный цикл изменялся блеск. Чаще всего это связано с внутренними процессами. Однако и внешние факторы могут повлиять на изменение блеска. К примеру, если звёздный свет пройдёт сквозь гравитационное поле.
  • Главная последовательность
  • Коричневый карлик
  • Проксима Центавра (красный карлик)
  • Белый карлик Сириус B
  • Голубой сверхгигант Ригель
  • Красный гигант и солнце

Помимо этого, выделяют и другие виды звезд:

  • Новые звёзды — это особый тип переменных, с достаточно резким изменением блеска. Собственно говоря, скачки светимости провоцируют вспышки тела с различными амплитудами.
  • Сверхновые — это те, которые на конечном этапе эволюции взрываются. Причем их взрыв или вспышка очень мощные.
  • Гиперновые или проще говоря, большие сверхновые звёзды. После того, как источники поддержания термоядерных реакций иссякают, происходит коллапс. Что интересно, сила и мощность их неминуемого взрыва превышает обычных сверхновых приблизительно в 100 раз.
  • LBV (Яркие голубые переменные) или переменные типа S Золотой Рыбы являются пульсирующими гипергигантами. Для них свойственны неправильные изменения блеска с колебаниями от 1 до 7 m. Правда, это очень редкие и недолго живущие звезды, которые всегда окружают туманности.
  • ULX (Ультраяркие рентгеновские источники) — космические объекты, обладающие сильным рентгеновским излучением. Их переменность может варьироваться от секунд до нескольких лет. Вероятно, что их источником излучения является чёрная дыра. На самом деле, мало изучены, редкие.
  • Нейтронные звёзды, на самом деле, представляют собой образования из нейтронов (нейтральных субатомных частиц). Поскольку эти частицы сильно сжимаются силами гравитации, то плотность светил также очень высокая. Между прочим, её часть сравнивают со средней плотностью атомного ядра. И это при том, что радиус нейтронных объектов составляет от 10 до 20 км, а масса равна примерно 1,5 солнечных масс.
  • Двойные звёзды или системы отличаются, главным образом, тем, что состоят их пары светил, связанных между собой силами гравитации. К удивлению, наша Галактика наполовину состоит именно из двойных звёзд.
  • Уникальные (объект Стефенсона-Сандьюлика) — это двойная затменная система звёзд. Один из компонентов представляет массивное светило с высокой температурой и светимостью, а другой небольшое тело (может быть нейтронным образованием или даже чёрной дырой). В результате взаимодействия компонентов производится сильнейшее рентгеновское излучение. На данным момент, к уникальным относится лишь одна система SS 433.
  • Взрыв гиперновой
  • Нейтронная звезда
  • Двойная звезда Сириус
  • Объект Стефенсона-Сандьюлика (SS 433)

Как видно, виды звёзд нашей Вселенной могут быть разные. Стоит отметить, что они отличаются друг от друга по своему звёздному размеру и массе, составу, температуре, расстоянию до нас и другим характеристикам. Но несмотря на это, среди всех небесных тел они носят гордое название — звезда.

Ядерные источники энергии и их связь со строением красных гигантов

При температурах порядка 108 K кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be8:

He4 + He4 = Be8

Большая часть Be8 снова распадается на две альфа-частицы, но при столкновении Be8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C12:

Be8 + He4 = C12 + 7,3 МэВ.

Несмотря на весьма низкую равновесную концентрацию Be8 (например, при температуре ~108 K отношение концентраций Be8/He4 ~10−10), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур ~1—2·108 K энерговыделение  :

Начало тройной гелиевой реакции в вырожденных ядрах маломассивных (масса до ~2,25 солнечных) красных гигантов имеет взрывоподобный характер, что приводит к резкому, но очень кратковременному (~104—105 лет) росту их светимости — гелиевой вспышке.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (см. Рис. 3) и реакций синтеза более тяжёлых ядер, с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро (Рис. 1).

Примеры

Регион Ориона показывает красный сверхгигант Бетельгейзе

Красные сверхгиганты — редкие звезды, но они видны на большом расстоянии и часто изменчивы, поэтому есть ряд хорошо известных примеров невооруженным глазом:

  • Psi1 Возничий
  • CE Tauri
  • Антарес
  • Эпсилон Пегасы
  • Бетельгейзе
  • Лямбда-велюр
  • Му Цефеи

Другие примеры стали известны из — за их огромных размеров, более 1000  R :

  • Стивенсон 2–18
  • VY Canis Majoris
  • UY Scuti
  • WOH G64
  • Вестерлунд 1-26
  • S Persei
  • NML Cygni

Ожидается, что обзор охватит практически все красные сверхгиганты Магелланова Облака, обнаруженные около дюжины звезд класса M M v −7 и более ярких, примерно в четверть миллиона раз ярче Солнца и примерно в 1000 раз превышающих радиус Солнца вверх.

Примечания

Молодые и старые Красные гиганты

Звёзды в процессе своей эволюции могут достигать поздних спектральных классов и высоких светимостей на двух этапах своего развития: на стадии звездообразования и поздних стадиях эволюции.

Стадия, на которой молодые звёзды наблюдаются как красные гиганты, зависит от их массы. В это время звезда излучает за счёт гравитационной энергии, выделяющейся при сжатии. По мере сжатия температура поверхности таких звёзд растёт, но вследствие уменьшения размеров и площади излучающей поверхности падает светимость. В конечном итоге в их ядрах начинается реакция термоядерного синтеза гелия из водорода (протон-протонный цикл, а для массивных звёзд также CNO-цикл), и молодая звезда выходит на главную последовательность.

На поздних стадиях эволюции звёзд после выгорания водорода в их недрах и образования «пассивного» (не участвующего в термоядерных реакциях) гелиевого ядра звёзды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов. Перед тем как перейти в стадию красного гиганта, звезда проходит промежуточную стадию — стадию субгиганта. Субгигант — это звезда, в ядре которой уже прекратились термоядерные реакции с участием водорода, но горение гелия ещё не началось, так как гелиевое ядро недостаточно разогрето.

В современной астрофизике термин красные гиганты относится, как правило, к таким проэволюционировавшим звёздам, сошедшим с главной последовательности; молодые звёзды, не вышедшие на главную последовательность, обобщённо называют протозвёздами.

Красные гиганты — переменные звёзды[ | ]

Фотография Миры в ультрафиолете. «Хвост» звёздной атмосферы обусловлен влиянием звезды-компаньона

  • Мириды (радиально пульсирующие долгопериодические переменные типа Ми́ры — Омикрона Кита) — гиганты спектрального класса М с периодом от 80 до более 1000 дней и вариациями блеска от 2,5m до 11m, в спектрах присутствуют эмиссионные линии.
  • SR — полуправильные пульсирующие переменные гиганты спектрального класса М с периодом от 20 дней до нескольких лет и вариациями блеска ~ 3m (пример: Z Большой Медведицы (нем.)русск.).
  • SRc — полуправильные пульсирующие переменные сверхгиганты спектрального класса М (примеры: μ Цефея, Бетельгейзе, α Геркулеса).
  • Lb — неправильные медленные пульсирующие переменные гиганты спектрального класса K, M, C, S (примеры: CO Cyg).
  • Lc — неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M с вариациями блеска ~ 1m (примеры: TZ Cas).
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector