10 космических объектов, которые сложно вообразить

Содержание:

Другие объекты

Как известно, светящиеся звезды на ночном небе образуют целые созвездия и группы. Например, группа из семи светил, которая располагается в созвездии Большая Медведица, образует известный астеризм Большой Ковш.Безусловно, в отдельном созвездии какой-то объект обладает наибольшими значениями по тем или иным параметрам. Взять для примера созвездие Ориона, где самая большая и объемная это звезда Бетельгейзе.Также в любой системе существует отличающееся своей величиной тело. Так, самая большая известная звезда Солнечной системы, разумеется, Солнце. Впрочем, оно же является единственным и центральным относительно нашей системы.

Созвездие Орион

Трубоукладчик «Академик Черский» идет в Европу в сопровождении российских боевых кораблей

Как сообщает веб-ресурс EurAsia Daily , российские боевые корабли сопровождают судно «Газпрома», способное достроить «Северный поток-2», из Индийского океана до Средиземного моря. Такие выводы можно сделать, если сопоставить данные навигационных порталов и сообщения Министерства обороны России. Трубоукладчик поменял курс со Шри-Ланки на Суэцкий канал, но простоял у острова несколько дней. После чего отключило передачу данных. В тот же день Шри-Ланку покинул российский боевой корабль, который направился по маршруту трубоукладчика — к Аденскому заливу, который ведет к Суэцкому каналу.

Самая большая планета в Солнечной системе

С диаметром 142 984 километра Юпитер является самой большой планетой Солнечной системы. Наряду с Сатурном, Ураном и Нептуном, Юпитер классифицируется как газовый гигант.

Масса Юпитера в 318 раз больше массы Земли. Он в 2,5 раза тяжелее всех остальных планет Солнечной системы вместе взятых. Гигант находится на расстоянии около 770 миллионов километров от Солнца и совершает полный оборот вокруг светила примерно за 11,9 земного года.

Пожалуй, самой известной особенностью Юпитера является его Большое Красное Пятно (БКП) – ураган, который продолжается на планете более 300 лет. Диаметр Пятна больше диаметра Земли.

История программы «Спектр»

Первая идея о сверхтяжелом орбитальном радиотелескопе появилась ещё при создании стометровой ракеты Н-1.

Удалось это только в 1979 году, когда на орбитальной станции «Салют-6» запустили первый в мире космический радиотелескоп.

Задолго до «Хаббла»: необходимость исследований дальнего космоса в различных диапазонах для фундаментальной науки, актуальной космогонии и прикладной космонавтики не вызывала сомнений.

В 1983 году на орбиту вышла советская автоматическая станция для астрофизических наблюдений с 80-сантиметровым ультрафиолетовым телескопом и комплексом рентгеновских спектрометров.

За 6 лет работы аппарат позволил получить важные данные в области нестационарных явлений, разобраться с появлением туманностей, зафиксировать детально вспышку сверхновой и исследовать шлейф кометы Галлея.

В 1989 году Советский союз успел вывести в космос при участии Франции, Дании и Болгарии международный проект «Гранат» с приборами, наблюдающими в оптическом, рентгеновском и гамма-диапазонах.

С его помощью было получено высокодетализованное изображение области центра галактики, открыто более десятка неизвестных ранее аккрецирующих чёрных дыр и нейтронных звезд, составлены подробные каталоги гамма-всплесков.

Космические телескопы стояли и на модуле «Квант-1» станции «Мир».

Первоначальный проект «Спектр» сочетал орбитальный телескоп с тридцатиметровой антенной и распределенный комплекс наземных лабораторий.

Комплексная конструкция позволяла увеличить дальность и «четкость» исследований. Кроме того, ученые предложили строить телескопы для разных частот.

Сначала был разработан радиотелескоп, в 1987 появилось дополнение с рабочим спектром в рентгеновском диапазоне. Уже в начале девяностных прибавился ультрафиолетовый.

Вывод первого телескопа проекта предполагался в 1997 году. Отсутствие финансирования отложило запуск, одновременно с тем позволив доработать составляющие и заручиться международной поддержкой.

В результате первый аппарат комплекса, радиотелескоп «Спектр-Р» с десятиметровой антенной, отправился на орбиту только в 2011 году. В 2021 его вывели из эксплуатации.

Вероятно, после вывода «Хаббла» 30 июня 2021 «Спектр» окажется единственным внеземным исследователем далекого космоса, и будет таковым по меньшей мере до 2035 года.

Самая большая галактика: сверхгалактика IC1101

На расстоянии от Земли в 310 млн. парсеков обнаружена крупнейшая эллиптическая галактика нашей Вселенной. Мега-монстр получил наименование IC1101. Его обширность составляет около 2-х млн. парсеков и включает порядка 100 трлн. звездных скоплений. Размеры нашего Млечного пути в 60 раз меньше, а масса в 2000 раз «легче».

Если представить размеры этого монстра, то он поглотил бы нашу галактику и близлежащие – Магеллановы Облака, Треугольник и Туманность Андромеды. Этот гигантский объект обязан своим существованием столкновению и образованию симбиоза из галактик гораздо меньших размеров.

Супервойд

Совсем недавно ученые обнаружили самое большое холодное пятно во Вселенной (по крайней мере известной науке Вселенной). Оно расположено в южной части созвездия Эридан. Своей протяженностью в 1,8 миллиарда световых лет это пятно ставит ученых в тупик, потому что они даже предположить не могли, что такой объект может действительно существовать.

Несмотря на наличие слова «войд» в названии (с английского «void» означает «пустота») пространство здесь не совсем пустое. В этом регионе космоса расположено примерно на 30 процентов меньше скопления галактик, чем в окружающем их пространстве. По мнению ученых, войды составляют до 50 процентов объема Вселенной, и этот процент, по их же мнению, будет продолжать расти благодаря сверхсильной гравитации, которая притягивает к себе всю окружающую их материю. Интересным этот войд делают две вещи: его невообразимый размер и его отношение к загадочному холодному реликтовому пятну WMAP.

Что интересно, новый обнаруженный супервойд сейчас воспринимается учеными как лучшее объяснение такого явления, как холодные пятна, или регионы космического пространства, заполненные космическим реликтовым (фоновым) микроволновым излучением. Ученые долгое время спорят, чем же на самом деле являются эти холодные пятна.

Одна из предложенных теорий, например, предполагает, что холодные пятна являются отпечатками черных дыр параллельных вселенных, вызываемых квантовой запутанностью между вселенными.

Однако многие ученые современности больше склоняются к мнению о том, что появление этих холодных пятен может провоцироваться супервойдами. Объясняется это тем, что когда протоны проходят через войд, они теряют свою энергию и слабеют.

Тем не менее есть вероятность, что расположение супервойдов относительно близко к расположению холодных пятен может являться простой случайностью. Ученым предстоит провести еще немало исследований на этот счет и в конце концов выяснить, являются ли войды причиной возникновения загадочных холодных пятен или их источником является нечто иное.

Перспективы комплекса «Спектр»

Несмотря на возрастающие по мере развития проекта возможности телескопов проекта «Спектр» и большое число стран-участников, разрабатывающих научное оборудование для него, перспективы довольно туманны.

Сокращение программы проводилось неоднократно и в хорошие годы: так, вместо первичного проекта «Спектр-РГ» был запущен «облегченный» вариант, несущий только 2 из 7 запланированных приборов.

Кроме того, он должен был запускаться до радиотелескопа «Спектр-Р», однако вышел на орбиту уже после того, как «предшественник» (по времени создания проекта) вывели из эксплуатации.

Следующие аппараты серии так же создаются при участии ряда западных стран, научная и финансовая коммуникация с которыми на данный момент осложняется.

Ввиду этого «Спектр-УФ» попадет в космос со значительным отставанием по срокам. Или сделает это без импортного оборудования, что снизит планируемые возможности.

Будем следить и рассказывать. Вероятно, уже в этом году программа «Спектр» сможет похвастаться очередной порцией уникальных результатов.

iPhones.ru

Самый крутой и скоро единственный во всем мире.

Как и где правильно встать на учет в военный комиссариат?

«Спектр-УФ» с ультрафиолетовым спектром работы для поиска жизни

Третий аппарат серии, обсерватория «Спектр-УФ», предназначен для точечного слежения с помощью УФ-телескопа Т-170М за конкретными объектами в ультрафиолетовом диапазоне и задуман ещё в 1990 году.

За это время несколько раз поменялся и сам проект, и его участники: сегодня предполагается существенный вклад не только России, но и Великобритании, Испании, Мексики и Японии.

Его основа, уникальное 170-сантиметровое зеркало, уже готово и ждет своего часа. Бортовое оборудование (в числе которого необходимые для функционирования спектрографы) стран-партнеров будет поставлено к 2022 году.

Основная задача аппарата – подробные исследования ключевых объектов космоса: ядер галактик, экзопланет.

Ультрафиолетовый обзор позволит оценивать спектр объектов и получать данные о изотопном составе, что позволит уточнить модели космоса, узнать состав атмосфер планет и, возможно, найти следы жизни.

Дополнительная задача аппарата – поиск скрытого диффузного барионного вещества, межгалактических облаков из горячих пыли и газа, которые практически невидимы для существующих телескопов.

Первоначальный запуск орбитальной составляющей комплекса в связи с последовательными сокращениями бюджета с 1997 года плавно перетек на 2021, а следом, из-за санкций 2014 года – на 2025-2026 год.

На данный момент ожидается, что телескоп будет запущен в конце 2025 года на тяжелой «Ангаре» с космодрома Восточный и отправится на геостационарную орбиту.

Адская планета

Gliese 581

Приливная блокировка привела к интересным особенностям. Если вы выйдете на стороне планеты, обращенной к Солнцу, вы наверняка растаете, как снеговик. На другой стороне планеты вы, однозначно, моментально замерзнете. Однако в «зоне сумерек» между двумя крайностями теоретически можно жить.

У жизни на Gliese 581, если таковая там имеется, свои трудности. Планета обращается вокруг красного карлика, что означает наличие красного неба над планетой, благодаря нижним частотам видимого спектра. Сущий ад. Фотосинтезирующим элементам придется привыкать к постоянной бомбардировке инфракрасного излучения, которое окрасит их в глубокий черный цвет. Никакой салат не будет выглядеть аппетитно на такой планете.

10.

Умозрительная вселенная
Во-первых, мы должны подчеркнуть, что мы действительно понятия не имеем, насколько велика в реальности вселенная. Многие физики считают, что наша вселенная на самом деле бесконечна по размеру (даже не будем углубляться в возможность того, что наша вселенная является частью мультивселенной с потенциально бесконечным числом вселенных), но истинность вопроса зависит от общей формы пространство-время. Несмотря на это, умозрительная вселенная имеет диаметр не менее 14 триллионов световых лет. Попробуйте умножить оценочное количество звезд в каждой галактике на количество оцененных галактик во вселенной, и вы получите приблизительное количество звезд, которые МОЖЕТ содержать вселенная. Давайте рассмотрим это в перспективе, в этом сценарии:

Каждый атом состоит в основном из пустого пространства (около 99%) с одним очень маленьким ядром. Так вот, соотношение между умозрительной вселенной и наблюдаемой может быть в десять миллиардов раз больше, чем между атомом и его ядром.

Хотите знать, что самое удивительное? В связи с расширением Вселенной в далеком будущем наступит момент, когда наблюдаемая часть Вселенной начнет сокращаться, прежде чем замерзнуть и исчезнуть из нашей видимости навсегда. Любой свет, излучаемый галактиками за пределами этого так называемого «светового горизонта», будет слишком далеко и слишком быстрым, чтобы когда-либо достичь нас.

Несмотря на то, что вселенная растет, она в конечном итоге сократится. По крайней мере, так будет казаться живым наблюдателям. Ночное небо будет темным, безликим и лишенным всех определяющих его черт. Но волноваться, впрочем, об этом не стоит. Задолго до этого наше солнце превратится в красного гиганта, поглотившего нашу планету и всех, кому не повезет жить здесь.

Наука и технологии
23 июня, 2020
453 просмотра

Самый большой газовый гигант вне Солнечной системы

Определить самую большую экзопланету класса газовый гигнат – задача не из простых. Ученым необходимо учесть множество вещей. Например, в космосе существуют объекты настолько огромные, что их сложно назвать планетами. Они скорее похожу на звезду. В то же время их масса меньше минимально необходимой для поддержания ядерных реакций горения водорода и превращения в звезду. Такие объекты принято называть субзвездными.

Предположительно самой большой экзопланетой класса газовый гигант среди обнаруженных на данный момент является HD 100546 b, открытая в 2013 году. Она находится в 337 световых годах от Земли. Ученые считают, что HD 100546 b в 6,9 раз крупнее и в 20 раз тяжелее Юпитера.

Бесплатные способы связи с авиакомпанией Победа

Самые массивные звезды в мире

Вы наверное заметили, что звезды огромных размеров могут иметь массу, на порядок превышающие солнечную. Но, тем не менее это не самые массивные звезды. Бывают и более тяжелые светящиеся объекты, размеры которых значительно уступают размерам описанных выше гигантов.

Сейчас вы увидите список самых массивных звезд, известных человеку. Их массу мы будем писать в солнечных массах, но надо понимать, что звёзды — это очень далёкие объекты с разными особенностями. Ученые не всегда могут точно определить их массу, потому как это делается на основе многих факторов, таких как орбита, яркость, удаленность и т.п.

1

R136a1

Возраст этой звезды Вольфа — Райе оценивается в 1,7 млн лет. И она тоже в компактном звездном скоплении R136.

Природа всех сверхмассивных звезд до конца неясна. Рождаются ли они такими или образуются путём поглощения других объектов пока остаётся загадкой. Кроме того, интересна эволюция этих звезд. Обычно они после себя образуют нейтронные звезды или черные дыры.

2

Эта Киля А

Вернемся к звезде, с которой мы начинали эту статью. Эта одна из системы двух звезд Эта Киля. Её масса равна от 150 до 250 солнечных, поэтому сегодня она на почетном третьем месте нашего рейтинга.

3

R136a2

Эта молодая звезда Вольфа — Райе, возраст которой всего 300 тысяч лет, находится в удивительном скоплении звезд R136 в галактике Большое Магелланово облако. Это скопление подарило Вселенной множество крупнейших звезд, три из которых вошли в наш ТОП-7 всех известных массивных звезд.

Вращается она со скоростью 200 км в секунду, что вероятнее всего делает её приплюснутой с полюсов и вытянутой в области экватора.

Солнечный ветер активно сдувает вещество с R136a2. Предполагается, что на момент рождения масса звезды была равна около 250 солнечных.

4

R136c

Звезда Вольфа — Райе возрастом 1,7 млн лет, которая также находится в скоплении R136.

В настоящее время R136c активно изучается астрономами. Есть некоторые предпосылки того, что звезда является двойной. Её светимость почти в 6 миллионов раз выше солнечной.

5

HD 269810

Как и несколько других звезд этого списка, эта звезда ярко сияет в соседней галактике под названием Большое Магелланово Облако. Недавно научный мир разжаловал этот космический объект, пересчитав его массу. Раньше считалось, что она в 150 раз превосходит наше родное светило по своей массе. Теперь же эта цифра равна 130, что всё равно делает её одной из самых массивных среди всех известных звёзд.

По разным данным, светимость HD 269810 превосходит солнечную от 2,2 до 6,3 млн раз.

6

VFTS 682

Эта звезда интересного класса астрономических объектов под названием Вольфа — Райе. Находится она на удалении в 164 тыс. св. лет от Земли в Большом Магеллановом Облаке.

Яркость VFTS 682 превышает солнечную чуть более чем в 3 млн раз, а масса в 150 раз.

Интересный факт: температура на поверхности VFTS 682 около 55 тысяч градусов по Кельвину. Для сравнения наше родное светило имеет температуру около 5 800ºК.

Еще одним интересным моментом является то, что звезда путешествует в одиночку. Она удаляется от туманности Тарантул и сейчас их разделяют 100 световых лет. Вероятно в результате какого-то мощного гравитационного взаимодействия звезду выбросило из туманности, где она зародилась.

Возраст звезды оценивают в 1–1,4 млн лет. По звездным меркам — это мгновение, но с другой стороны живут такие звезды немного, всего несколько миллионов лет. Сейчас сложно сказать что случится с VFTS 682 через 1–2 млн лет, возможно она вспыхнет сверхновой, а может и коллапсирует в черную дыру.

7

WR 102ka

Эта молодая звезда ещё одна, относящаяся к классу звезд Вольфа — Райе. Удалена от нас на 26 тыс. световых лет. Её возраст всего около 3 млн лет — совсем немного по космическим меркам. Можно сказать, что звезда является ровесником человечества. Но в столь юном возрасте, она уже излучает свет, который в 3,2 млн раз ярче нашего Солнца. Таким образом это не только одна из самых массивных звёзд, но также и одна из самых ярких.

Рекордсмен, которого побили – Tres-4b

Рекордсменом по размерам до недавнего времени была планета Tres-4b, расположенная в созвездии Геркулес. С 2006 года до 2011 года это была самая большая планета во Вселенной. Она в 1.706 раз больше Юпитера, почти вдвое. Что любопытно, эта планета расположена в двойной системе, и других подобных пока не известно, ведь в таких системах действуют гравитационные силы двух звезд, мешающие формированию планет и стабильных орбит.

Планета Tres-4b – газовый гигант, подобный Юпитеру, и располагается очень близко к своей звезде – всего в 4.5 миллионах километров. Для сравнения, расстояние от Солнца до Меркурия, самой горячей планеты нашей системы – 58 миллионов километров, а до Земли – 150 миллионов!

Полный оборот по орбите Tres-4b совершает всего за 3.5 суток, и этот газовый шар очень горячий – температура его превышает 1700 градусов. Горячий газ имеет тенденцию к расширению, поэтому планета эта «рыхлая», её плотность очень низкая, в среднем, как у пенопласта или бальсового дерева. Это очень мало.

Хотя Tres-4b и большая планета, но масса её чуть меньше, чем у Юпитера, поэтому и гравитация у неё меньше. Эта горячая газовая планета при большом размере и низкой гравитации не в состоянии удерживать своё вещество, поэтому постоянно теряет его из своей атмосферы. Этот газовый шлейф тянется за планетой, как кометный хвост.

Эта планета – загадка для ученых. При столь гигантских размерах и несоразмерно малой массе она просто не должна существовать. Да, сейчас она теряет массу, но как она смогла при таких условиях вообще образоваться? Может, когда-то она не была такой горячей, и потому была меньших размеров и более плотной, как Юпитер? Тогда она в прошлом была гораздо дальше от звезды или вовсе была захвачена звездой где-то по пути.

К сожалению, посмотреть на эту планету вживую в обозримом будущем не представляется возможным – расстояние до нее невообразимо большое, 1600 световых лет.

Эта огромная планета была открыта транзитным методом еще в 2006 году, а результаты были опубликованы год спустя.

Программа, в рамках которой проводились исследования, называется TrES – Trans-Atlantic Exoplanet Survey, или Трансатлантический экзопланетный обзор. В ней участвуют три небольших 10-сантиметровых телескопа из разных обсерваторий, оснащенных камерами Шмидта и автопоиском. Всего в рамках этой программы было обнаружено пять экзопланет, в том числе и Tres-4b.

Самые большие планеты: TrES-4 и WASP-17 b

Кроме гигантских образований в космосе существуют более мелкие, но близкие нам объекты, также поражающие своей величиной. Речь о экзопланетах – планетах по параметрам схожими с планетами Солнечной системы. Самым большим планетным исполином такого типа, является гигант TrES-4 (WASP-17 b совсем на чуточку больше), расположенный в ореоле Геркулеса. Планетарный масштаб объекта превосходит Землю в 20 раз, а самую большую планету нашей системы – Юпитер в 2 раза. Основа газового великана преимущественно водород и его температура составляет порядка 127С.

К удивлению у планеты очень низкая масса, и высокий разогрев способствует разбрасыванию атмосферы и самостоятельному расширению. Космический объект постоянно окутан газопылевыми облаками, что создает визуальную картину кометного хвоста.

На рисунке WASP-17 b по сравнению с Юпитером.

UGC 9555

Эта галактика находится непосредственно в тройке галактик, называемой системой UGC 9555. Скопление расположено на расстоянии 820 миллионов световых лет от Земли. Все, что рядом с ней в любом направлении – это элементы более грандиозных галактических скоплений MSPM 02158.

Астрономы из Британии обнаружили там много новой информации, изучая кластер с помощью прибора Low Frequency Array (LOFAR). Это довольно неплохой телескоп, хотя он морально и технически устарел.

В рамках проекта ученые MSSS наблюдают за тем, что происходит в дальнем космосе в диапазоне частот от 119 до 158 МГц. Проверка проводится не на всем интервале частот, а на небольших приращениях в полосах на 2 МГц.

После последнего изучения полученного радиочастотного излучения был обнаружен и удивительно большой размер радиогалактики GRG. По размеру он примерно равен диаметру 2,56 МПК – это просто огромный «кусок» звездного материала.

Жизненный цикл звезд Вселенной

Звезда во Вселенной начинает свою жизнь в виде облака пыли и газа, называемого туманностью. Гравитация соседней или взрывная волна сверхновой звезды могут заставить туманность сжиматься. Элементы газового облака объединяются в плотную область, называемую протозвездой. В результате последующего сжатия протозвезда нагревается. В итоге, она достигает критической массы, и начинается ядерный процесс; постепенно звезда проходит все фазы своего существование. Первый (ядерный) этап жизни звезды – самый долгий и стабильный.

Продолжительность жизни звезды зависит от её размера. Крупные звёзды расходуют своё жизненное топливо быстрее. Их жизненный цикл может длиться не более нескольких сотен тысяч лет. А вот маленькие звёзды живут многие миллиарды лет, так как тратят свою энергию медленнее.

Но, как бы то ни было, рано или поздно, звёздное топливо кончается, и тогда маленькая звезда превращается в красного гиганта, а крупная звезда – в красного супергиганта. Эта фаза продлиться до тех пор, пока топливо не израсходуется окончательно. В этот критический момент внутреннее давление ядерной реакции ослабнет и больше не сможет уравновешивать силу гравитации, и, в результате, произойдет коллапс звезды. Затем небольшие звёзды Вселенной, как правило, перевоплощаются в планетарную туманность с ярким сияющим ядром, называемым белым карликом. Со временем и он остывает, превращаясь в тёмный сгусток материи – чёрного карлика.

У больших звезд всё происходит немного иначе. Во время коллапса они высвобождают невероятное количество энергии, и мощный взрыв рождает сверхновую звезду. Если её величина составляет  1.4 величины Солнца, тогда, к сожалению, ядро не сможет поддерживать своё существование и, после очередного коллапса, сверхновая звезда станет нейтронной. Внутренняя материя звезды сожмётся до такой степени, что атомы образуют плотную оболочку, состоящую из нейтронов. Если же звёздная величина в три раза больше солнечной, то коллапс её просто уничтожит, сотрёт с лица Вселенной.

Туманность, оставшаяся после звезды Вселенной, может расширяться в течение миллионов лет. В конце концов, на неё подействует гравитация соседней или взрывная волна сверхновой звезды и всё повторится снова. Этот процесс будет происходить по всей Вселенной – бесконечный цикл жизни, смерти и возрождения.

Результатом этой звёздной эволюции является образование тяжёлых элементов, необходимых для жизни. Наша солнечная система произошла из второго или третьего поколения туманности, и благодаря этому на Земле и других планетах есть тяжёлые элементы. А это значит, что в каждом из нас есть частички звёзд.

Кастет запрещен или нет в россии? Что будет за кастет в россии

Как называется самая большая звезда во Вселенной

Собственно говоря, самая большая звезда во Вселенной это UY Щита. По праву, этот яркий гипергигант спектрального класса M4Ia занимает лидирующую позицию среди крупнейших звёздных представителей.По оценке учёных, радиус UY Щита равен более чем 1700 радиусам нашего главного светила. Хотя её масса составляет примерно 10 солнечных. Что интересно, средняя плотность этого гипергиганта практически в миллион раз меньше плотности воздуха, которым мы дышим. Другими словами, насыщенность материи очень похожа на космический вакуум.

Причем от нас UY Щита находится на расстоянии 9500 световых лет и мы различаем её на небе, как одну из множества тусклых звёздочек.Несмотря на это, по значению светимости она также превышает Солнце. Если точнее, то в 340 тысяч раз. В сравнении с ней наше центральное светило-крошечное тельце. Тогда, что такое Земля? Можно сказать, всего лишь маленькое пятнышко в космическом пространстве.

UY Щита

Кроме того, UY Щита относится к переменным пульсирующим телам. Сейчас она приближается к завершающей стадии эволюции. Так как в ней уже началось горение гелия и других более тяжёлых элементов. Считается, что она станет жёлтым сверхгигантом, а в будущем превратится в голубую переменную или даже звезду Вольфа-Райе. В результате взорвётся сверхновой и, скорее всего, в итоге сформируется в нейтронный объект.

Самая большая черная дыра: сверхмассивная TON 618

Показателем измерения черной дыры является не расстояние в световых годах или парсеках, а их масса. Самой большой, в разы превышающей остальные дыры обнаруженные астрофизиками, является объект TON 618. Она заключает в себе концентрацию огромных количеств вещества, превышающую массу нашего Солнца в 66 млрд. раз. Светимость квазара TON 618 в 140 000 000 000 000 раз выше солнечной. Находится черная дыра в созвездии Гончих Псов.

Процесс формирования этих объектов до конца не ясен. По предположениям ученых такие дыры создаются после смерти звездных гигантов в результате неограниченного гравитационного сжатия и это притяжение не могут покинуть даже фотоны света.

Другие объекты

Как известно, светящиеся звезды на ночном небе образуют целые созвездия и группы. Например, группа из семи светил, которая располагается в созвездии Большая Медведица, образует известный астеризм Большой Ковш.Безусловно, в отдельном созвездии какой-то объект обладает наибольшими значениями по тем или иным параметрам. Взять для примера созвездие Ориона, где самая большая и объемная это звезда Бетельгейзе.Также в любой системе существует отличающееся своей величиной тело. Так, самая большая известная звезда Солнечной системы, разумеется, Солнце. Впрочем, оно же является единственным и центральным относительно нашей системы.

Сверхскопление Шепли

Многие годы ученые считают, что наша галактика Млечный Путь со скоростью 2,2 миллиона километра в час притягивается через Вселенную к созвездию Центавра. Астрономы теоретизируют, что причиной этому является Великий аттрактор (Great Attractor), объект с такой силой гравитации, которой достаточно аж для того, чтобы притягивать к себе целые галактики. Правда, выяснить, что же это за объект, ученые долгое время не могли, так как объект этот расположен за так называемой «зоной избегания» (ZOA), области неба около плоскости Млечного Пути, где поглощение света межзвездной пылью настолько велико, что невозможно разглядеть, что за ней находится.

Однако со временем на помощь пришла рентгеновская астрономия, которая развилась достаточно сильно, что позволила заглянуть за область ZOA и выяснить, что же является причиной такого сильного гравитационного пула. Все что ученые увидели, оказалось обычным скоплением галактик, что поставило ученых в тупик еще сильнее. Эти галактики не могли являться Великим аттрактором и обладать достаточной гравитацией для притягивания нашего Млечного Пути. Этот показатель составлять всего 44 процента от необходимого. Однако как только ученые решили заглянуть поглубже в космос, они вскоре обнаружили, что «великим космическим магнитом» является куда больший объект, чем ранее считалось. Этим объектом является сверхкластер Шепли.

Сверхкластер Шепли, являющийся сверхмассивным скоплением галактик, расположен за Великим аттрактором. Он настолько огромен и обладает настолько мощным притяжением, что притягивает к себе и сам Аттрактор, и нашу собственную галактику. Состоит сверхскопление из более 8000 галактик с массой более 10 миллионов Солнц. Каждая галактика в нашем регионе космоса в настоящий момент притягивается этим сверхкластером.

Самый большой газовый гигант вне Солнечной системы

Самый большой газовый гигант.

Определить самую большую экзопланету класса газовый гигнат – задача не из простых. Ученым необходимо учесть множество вещей. Например, в космосе существуют объекты настолько огромные, что их сложно назвать планетами. Они скорее похожу на звезду. В то же время их масса меньше минимально необходимой для поддержания ядерных реакций горения водорода и превращения в звезду. Такие объекты принято называть субзвездными.

Предположительно самой большой экзопланетой класса газовый гигант среди обнаруженных на данный момент является HD 100546 b, открытая в 2013 году. Она находится в 337 световых годах от Земли. Ученые считают, что HD 100546 b в 6,9 раз крупнее и в 20 раз тяжелее Юпитера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector